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ABSTRACT: The Standard Penetrating Test (SPT) can be considered as one of the most common in-situ 
popular and economic tests for subsurface investigation. Therefore, many empirical correlations have been 
developed between the SPT N-value, and other properties of soil. The principle objective of the current study 
is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil 
angle of internal friction (Φ), the soil modulus of elasticity (E) and tip resistance (qc) of cone penetration test 
(CPT) results from SPT results considering the uncertainty and non-linearity of the soil. In addition, ANNs are 
used to study the influence of different input parameters that can be used to improve the prediction. A large 
amount of field and experimental data including SPT/CPT results, plate load tests, direct shear box, grain size 
distribution was obtained from a project in the United Arab Emirates to be used in the training and the validation 
of the ANNs.  The ANN results are compared with some common traditional correlations. The results show 
that the developed ANNs can efficiently predict the aimed parameters from the SPT results. The predicted 
parameters from ANN are in very good agreement with the measured results compared to the predicted values 
from available traditional correlations.  
 
Keywords: Angle of Internal Friction; Cone Penetrating Test; General Regression Neural Network; Soil 
Modulus of Elasticity, Standard Penetrating Test. 
 
1. INTRODUCTION 
 

The Standard Penetration Test (SPT) is one of the 
most commonly used in-situ tests for site 
investigation and foundation design. Many 
empirical correlations have been developed 
between the SPT N-value, and other engineering 
properties of soil. Despite the fact that this test has 
disadvantages such as discrete strength 
measurement and dependence on operator and 
apparatus, it is still the most popular and economic 
mean for subsurface investigation.  

The current paper studies the feasibility and 
efficiency of using artificial neural networks 
(ANNs) to estimate the soil properties Φ (angle of 
internal friction), E (modulus of elasticity) and qc 
(tip resistance of cone penetration test (CPT)) [1]-
[5] from SPT results. In addition, the study 
investigates which parameters should be included in 
the soil property estimation to improve the 
prediction models.  

Artificial neural networks have been intensively 
studied and applied to many geotechnical 
engineering problems. In addition, It has been 
applied to estimate many soil and material 
properties and it is proved to be a powerful tool that 
can have superiority over other correlation 
techniques [6] - [10]. The idea of neural network 
technology is similar to the brain’s own problem-
solving process. An ANN is composed of a large 

number of connected neurons which act like simple 
processors. Generally, when a large volume of data 
is available for training, ANNs offer viable 
solutions. It has been shown that ANNs are capable 
of mapping nonlinear and complex relationships in 
nature and are very beneficial when a problem is 
difficult to formulate analytically.  

To train and test a neural network a large amount 
of data is needed. In the current study, field and 
experimental data including SPT/ CPT results, plate 
load tests, direct shear box, grain size distribution 
were obtained then filtered and processed from a 
large-scale project that covers the United Arab 
Emirates (UAE). The soil in UAE is mostly 
cohessionless soil. UAE is witnessing a lot of 
development and many construction projects. It is 
believed that using data from such active areas in 
construction for prediction of soil properties would 
be of benefit to engineers in this area specifically 
and to geotechnical engineers in general.  

The available data used for estimating Φ (Direct 
shear box), E (plate loading test) and qc (CPT 
results) from N (SPT results), is first presented. The 
different ANN models are then developed. 
Different input parameters were considered to study 
the influence of the input parameters on the ANN 
models. The predictions from ANN are compared 
to predictions from other correlations available in 
the literature. Conclusions highlighting the 
efficiency of the ANNs are finally presented. 
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2. AVAILABLE DATA  
 

The data for this study was collected from the 
results of geotechnical investigation work that had 
been done for a large-scale project. The project 
extends all over United Arab Emirates (UAE) 
where the soil is mainly cohessionless soil.  

The project had about 820 boreholes with 
variable depths including standard penetration tests 
(SPT) for each borehole along the project alignment. 
Additionally, 400 cone penetration tests (CPT) were 
executed beside the boreholes. Moreover, there 
were 630 test-pits with maximum depth of 3.0m 
with 260 plate loading tests to determine the 
modulus of soil elasticity and 606 California 
Bearing Ratio tests (CBR). Lab tests were 
performed on the soil samples for classification 
(grain size distribution tests; sieve analysis and 
hydrometer) and for determining the shear strength 
parameters (direct shear box).  
 
3. NEURAL NETWORK MODELING 
 

The current study uses a supervised ANN. In a 
supervised network, a large number of correct 
predictions are given to the model from which it can 
learn. Examples of supervised networks are back 
propagation networks (BPN), general regression 
neural networks (GRNN) and probabilistic neural 
networks (PNN) [11], [12].  

The architecture of a supervised ANN, generally, 
consists of an input layer, an output layer and one 
or more hidden layers. The input layer contains the 
input variables. The output layer contains the target 
output vector. At least one hidden layer that 
contains the artificial neurons (processing units) is 
used between the input and output to assist in the 
learning process. The neurons in the different layers 
are interconnected. Each connection has a 'weight' 
associated with it. Input values in the first layer are 
weighted and passed on to the hidden layer. 
Neurons in the hidden layer produce outputs by 
applying an activation function to the sum of the 
weighted input values [11], [12]. These outputs are 
then weighted by the connections between the 
hidden and output layer. The output layer produces 
the desired results. 

Two main phases are included in neural network 
operation. The first is the training phase and the 
second is the testing phase. In the first phase the 
data is repeatedly presented to the network while the 
weights of the data are updated to obtain the desired 
output. In the second phase the trained network with 
the frozen weights is applied to data it has never 
seen. A properly trained network can model the 
unknown function that relates the input variables to 
the output variables. It can then be used to make 

predictions for a given set of previously unseen 
input patterns where the output values are unknown. 

 The neural networks used in the current study 
were developed using the neural network program 
Neuroshell 2 [13]. This program implements 
several different neural network algorithms. The 
general regression neural network (GRNN) was 
used in the current study. GRNNs are known for 
their ability to train quickly on sparse data sets [10].  

The GRNN models developed were three-layer 
networks (input layer, output layer and one hidden 
layer). The number of neurons in the input layer is 
equal to the number of inputs while the number of 
neurons in the output layer is equal to the number 
of outputs. The number of neurons in the hidden 
layer is usually equal to the number of correct 
patterns given to the model to learn from.  

The inputs were scaled using a linear scale 
function [0,1]. The GRNN used was genetic 
adaptive; i.e. it uses a genetic algorithm to find an 
input smoothing factor adjustment. The genetic 
breeding pool size of 100 was used in the developed 
GRNN. An initial smoothing factor was taken as 0.3. 
The smoothing factor is an important parameter in 
the GRNN which determines how tightly the 
network matches its predictions to the data in the 
training patterns. 

For each of the data sets prepared to estimate Φ, 
E and qc from N, 20% of the data was randomly 
extracted. This 20% was used as a testing set while 
the rest of the data was used as a training set. 
 
4. ESTIMATING Φ FROM SPT RESULTS 

 
4.1 Output/Input Variables of ANN Analysis 

 
For estimating Φ from SPT results, the SPT 

results (N values), direct shear test and grain size 
analysis were used from the available data. The 
readings of the SPT test were filtered to be at the 
same elevation of the lab tests. A total of 84 data 
points were prepared. The parameters that were 
investigated as input parameters to be included in 
the GRNN models developed were N (obtained 
from SPT results), Fc (fines content), D50 (defined 
as grain diameter corresponding to 50% of the 
material being smaller) obtained from grain size 
analysis and σeff (the effective overburden pressure) 
calculated at the same level of the SPT test. The 
calculation of effective overburden pressure was 
based on a unit weight of soil of 18 KN/m3 and the 
unit weight of water of 10 KN/m3 taking into 
consideration the effect of ground water level.  

The output of the GRNN models considered was 
tan Φ which was both measured (obtained from 
direct shear box) and estimated by the GRNN 
models developed. Five different GRNN models 
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were developed with different input parameters to 
study the influence of the input parameters on the 
obtained tan Φ. To evaluate the efficiency of the 
GRNN models developed, the coefficient of 
correlation (r2) was used. r2 is a statistical measure 
of the strength of the relationship between the actual 
versus predicted outputs. r2 value of 1 indicates a 
perfect fit, while that of 0 indicates no relationship. 
 
4.2 Results of Neural Networks 

 
Fig. 1 shows 5 different GRNN models 

developed (GRNN1 to GRNN5) with 5 different 
input combinations and the corresponding r2 (for all 
data points) obtained for each Network. GRNN2 
with inputs (N, σeff) was the best model to represent 
the correlation of predicting (tanΦ) from SPT 
results and effective overburden with a high value 
of r2 of 97.55%.  

Table 1 presents the data used in GRNN2 as input 
and the measured tan Φ. The comparison between 
the predicted tan Φ from GRNN and the actual 
measured values is presented in Fig. 2.  

 

 
 
Fig. 1 Trials used to predict tan (Φ) from SPT 
results considering different input parameters with 
r2 coefficient (%) 
 
Table 1 The used data for estimation of φ 
(GRNN2) 

Index Effective stress(KPa) N (SPT) Tan (Φ) 
1 38.0 27 0.809213 
2 29.0 68 0.86865 
3 39.0 7 0.553974 
4 21.5 16 0.624476 
5 28.0 11 0.600487 
6 35.0 22 0.674071 
7 58.0 33 0.726056 
8 43.5 20 0.726056 
9 29.5 9 0.576996 
10 52.0 10 0.576996 
11 59.2 22 0.699746 
12 26.0 11 0.600487 
13 24.0 9 0.576996 

Table 1 (continued)   
Index Effective stress(KPa) N (SPT) Tan (Φ) 

14 32.0 7 0.576996 
15 42.0 7 0.553974 
16 33.0 5 0.553974 
17 35.0 5 0.553974 
18 14.9 5 0.553974 
19 52.0 8 0.576996 
20 50.0 27 0.576996 
21 76.0 11 0.600487 
22 27.5 2 0.466038 
23 43.5 6 0.576996 
24 28.0 5 0.553974 
25 27.0 10 0.576996 
26 55.0 13 0.600487 
27 44.5 9 0.600487 
28 30.0 10 0.576996 
29 29.0 15 0.624476 
30 61.0 6 0.553974 
31 28.0 8 0.576996 
32 60.0 8 0.553974 
33 29.0 24 0.674071 
34 29.0 10 0.600487 
35 77.0 23 0.674071 
36 28.0 16 0.648993 
37 52.0 15 0.624476 
38 29.0 20 0.648993 
39 65.0 16 0.674071 
40 22.5 16 0.624476 
41 81.5 19 0.648993 
42 28.5 16 0.600487 
43 30.5 16 0.576996 
44 30.0 6 0.553974 
45 62.0 7 0.576996 
46 33.0 12 0.600487 
47 81.0 8 0.576996 
48 51.0 13 0.753041 
49 73.0 14 0.753041 
50 68.0 10 0.600487 
51 36.0 6 0.576996 
52 76.0 26 0.699746 
53 45.0 15 0.753041 
54 89.0 7 0.576996 
55 43.5 19 0.624476 
56 29.0 10 0.600487 
57 81.0 38 0.753041 
58 34.5 20 0.648993 
59 58.0 14 0.753041 
60 40.5 11 0.600487 
61 42.0 12 0.576996 
62 58.0 23 0.648993 
63 43.0 20 0.624476 
64 37.3 1 0.531392 
65 39.0 11 0.553974 
66 43.0 4 0.531392 
67 51.0 7 0.531392 
68 45.0 5 0.509225 
69 50.0 1 0.487448 
70 43.0 8 0.531392 
71 47.0 6 0.531392 
72 61.0 9 0.553974 
73 41.0 9 0.576996 
74 21.0 6 0.553974 
75 36.0 8 0.531392 
76 49.0 3 0.509225 
77 26.0 3 0.531392 
78 47.0 9 0.531392 
79 38.0 5 0.531392 
80 48.1 4 0.509225 
81 27.0 12 0.576996 
82 29.0 12 0.576996 
83 29.5 14 0.600487 
84 26.0 13 0.553974 

tanΦ tanΦ 

σeff  σeff  

σeff  

tanΦ tanΦ 

tanΦ 

 

σeff  
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For GRNN2, the weight (influence) of each input 
parameter on the relation is reflected by the 
individual smoothing factor of each input parameter. 
The individual smoothing factors for each input are 
shown in Fig. 2. It is concluded from Fig. 2 that 
(σeff) is the second input variable that influences the 
network and N- value (SPT result) is the first one.  

 
Fig.2 The weight factors for the correlation between 
angle of internal friction and SPT results (GRNN2) 
 
4.3 Comparison between Neural Networks and 
a Set of Traditional Methods 
 
Table 2 shows some of the correlations used for the 
estimation of Φ from SPT results available in the 
literature. The available data is applied to the 
available correlations in the literature and are 
plotted in Fig. 3 along with the results from the 
ANN model developed.  
       From Fig. 3, it is clear that the ANN model 
predicted values of angle of internal friction are 
very close to the measured values compared to the 
other available correlations.  Therefore, it is a good 
indication for the applicability of using this model 
in comparison with other correlations 
 

Table 2 Different correlations for predicting (tanφ)  
Researcher Correlation 

Kulhawy and 
Mayne, 
(1990) 

𝝓𝝓 = 𝒕𝒕𝒕𝒕𝒕𝒕−𝟏𝟏(𝑵𝑵/(𝟏𝟏𝟏𝟏.𝟏𝟏𝟐𝟐 + 𝟏𝟏𝟐𝟐.𝟑𝟑𝟐𝟐𝜹𝜹𝒗𝒗𝒗𝒗/𝒑𝒑𝒕𝒕)𝟐𝟐.𝟑𝟑𝟑𝟑 

Wolff, 
(1989). 

𝝓𝝓 = 𝟏𝟏𝟐𝟐.𝟏𝟏 + 𝟐𝟐.𝟑𝟑𝟐𝟐𝑵𝑵−.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟑𝟑𝑵𝑵𝟏𝟏 

Shioi and 
Fukui (1982) 

𝛟𝛟 = 𝟑𝟑.𝟐𝟐 𝐍𝐍  + 𝟏𝟏𝟐𝟐 

Hatanaka and 
Uchida, 
(1996) 

𝝓𝝓 = �𝟏𝟏𝟏𝟏 𝑵𝑵𝟏𝟏
  

+ 𝟏𝟏𝟐𝟐 

Where, 𝑵𝑵𝟏𝟏 = �𝟗𝟗𝟏𝟏
𝝈𝝈𝒗𝒗𝒗𝒗  

𝑵𝑵   &   𝝈𝝈𝒗𝒗𝒗𝒗  𝒊𝒊𝒕𝒕 𝑲𝑲𝑲𝑲𝒕𝒕 

𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘  𝝈𝝈𝒗𝒗𝒗𝒗 𝒊𝒊𝒊𝒊 𝒘𝒘𝒆𝒆𝒆𝒆𝒘𝒘𝒆𝒆𝒕𝒕𝒊𝒊𝒗𝒗𝒘𝒘 𝒘𝒘𝒕𝒕𝒘𝒘𝒕𝒕𝒘𝒘 𝒑𝒑𝒘𝒘𝒘𝒘𝒊𝒊𝒊𝒊𝒑𝒑𝒘𝒘𝒘𝒘 
 

 
Fig. 3 Comparison between actual (measured) and 
predicted (tanΦ) from SPT. 

5. ESTIMATING E FROM SPT RESULTS 
 

5.1 Output/Input Variables of ANN Analysis 
 
For estimating E from SPT results, the SPT 

results (N values), plate loading test and grain size 
analysis were used from the available data. The 
readings of the SPT test were filtered to be at the 
same elevation of the lab tests and at the zone of 120 
cm below plate loading test (influence zone while 
the plate width is 60cm). Thirty-four data points 
were prepared. The parameters that were 
investigated as input parameters to be included in 
the GRNN models developed were N (obtained 
from SPT results), Fc (fines content), D50 and depth 
of water below the plate loading test. 
 
5.2 Results of Neural Networks 

 
Fig. 4 shows 7 different GRNN models 

developed (GRNN1 to GRNN7) with 7 different 
input combinations and the corresponding r2 (for all 
data points) obtained for each Network. GRNN2 
with inputs (N, D50) was the best model to represent 
the correlation of predicting (E) from SPT results 
with a high value of r2 of 95.46%. Fig. 5 shows the 
influence/weight factors for every input. 

Table 3 presents the data used as input and the 
measured E. Fig. 6 shows the comparison between 
the predicted E from GRNN2 and the actual 
measured values. 

 
Table 3 The used data for the estimation of E  

Index N 
SPT 

Fc 
(%) 

D50 
(mm) 

Water 
Depth below 

PLT (m) 

E 
(MPa) 

1 7 12.7 0.121 0.406 54.35 
2 6 6.6 0.144 0.4 31.6 
3 14 9.4 0.1539 0.945 23.89 
4 2 10.1 0.1318 1.2 42.78 
5 14 1 0.1678 50 27.51 
6 24 1 0.2159 50 19.2 
7 20 1.4 0.1875 50 10.09 
8 15 1.9 0.1382 50 33.78 
9 15 1.5 0.1541 2.7 73.05 
10 28 1.5 0.2149 50 20.13 
11 28 1.6 0.1889 50 37.63 
12 53 1.7 0.183 50 27.85 
13 30 7.8 0.178 1.1 41.98 
14 2 10 0.155 1.1 19.07 
15 10 8.6 0.135 1.2 18.88 
16 3 8.4 0.148 1.1 19.07 
17 3 8.7 0.136 1.2 13.46 
18 14 7.7 0.186 1.3 13.36 
19 3 8.8 0.122 1.2 22.06 
20 4 8.9 0.143 1.3 24.56 
21 4 10 0.1227 1.3 9.9 
22 7 9.1 0.152 1.2 22.1 
23 4 9.9 0.157 1.3 22.1 
24 7 10 0.143 1.5 31.16 
25 7 9.3 0.1426 1.7 33.38 
26 13 12 0.135 2.2 33.58 
27 10 12.5 0.131 1.7 29.15 
28 18 11.7 0.132 1.8 29.61 
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Table 3 (continued)   

Index N 
SPT 

Fc 
(%) 

D50 
(mm) 

Water 
Depth below 

PLT (m) 

E 
(Mpa) 

29 38 12.7 0.137 50 37.63 
30 3 13.5 0.163 1.3 11.28 
31 2 29 0.187 1.1 54.35 
32 5 68 0.206 2.5 25.74 
33 2 7.8 0.1563 2.7 40.76 
34 2 9 0.15 2.6 43.44 

Fig. 4 Trials used to predict E from SPT results 
considering different input parameters with r2 
coefficient (%).  

 
 Fig. 5 The weight factors for the correlation 
between angle of internal friction and SPT results 
(GRNN2) 

 
Fig. 6 Comparison between predicted and measured 
E  
 
5.3 Comparison between Neural Networks and 
a Set of Traditional Methods 
 

Table 4 and Fig. 7 show some of the correlations 
used for estimation of E from SPT results available 
in the literature. From Fig. 7, it is shown that the 
ANN model (GRNN2) was in very good agreement 

with measured values of E compared to the other 
available correlations in the literature. 

Fig. 7 Comparison between actual (measured) and 
predicted (E) from SPT. 
 
Table 4 Different correlations for predicting (E) 
from SPT results 
 

Researcher Correlation 
Kulhawy and Mayne, (1990) 𝟐𝟐𝐍𝐍 =  𝑬𝑬 𝐏𝐏𝐚𝐚�   

Schmertman(1970) 𝐄𝐄(𝑲𝑲𝑲𝑲𝒕𝒕) = 𝟐𝟐𝟕𝟕𝟕𝟕𝑵𝑵  
Denver(1982) 𝑬𝑬(𝑴𝑴𝑲𝑲𝒕𝒕) = 𝟐𝟐√𝑵𝑵  
Webb (1969) 𝐄𝐄(𝐊𝐊𝐊𝐊/𝐜𝐜𝐜𝐜𝟏𝟏) =  𝟐𝟐.𝟏𝟏𝟐𝟐+ 𝟐𝟐.𝟑𝟑𝟐𝟐𝟏𝟏𝐍𝐍 

Ohsaki and Iwasaki (1973) 𝑬𝑬(𝑴𝑴𝑲𝑲𝒕𝒕) =  𝟑𝟑.𝟐𝟐 ∗ 𝑵𝑵 𝟐𝟐.𝟏𝟏  
D’Appolonia (1970) 𝑬𝑬(𝑴𝑴𝑲𝑲𝒕𝒕) =  𝟏𝟏𝟏𝟏.𝟐𝟐𝟐𝟐 + 𝟐𝟐.𝟐𝟐𝟐𝟐𝟕𝟕𝑵𝑵  

Schultze & Menzenbach (1960) E(𝑴𝑴𝑲𝑲𝒕𝒕)= 7.46+0.517N  
Trofimenkov (1974) E(𝑲𝑲𝑲𝑲/𝒆𝒆𝒄𝒄𝟏𝟏)= 500 log10(N) 

 
6. ESTIMATING (qc) FROM SPT RESULTS 
 
 6.1 Output/Input Variables of ANN Analysis 

 
For estimating qc from SPT results, the SPT 

results (N values), results of grain size analysis (Fc, 
D50, D30, D10) and effective overburden pressure 
(σeff) were used from the available data. The 
readings of the CPT tests were filtered to be at the 
same elevation of the lab tests and N-value of SPT. 
A total of 93 data points were prepared.  

 
6.2 Results of Neural Networks 
 

Fig. 8 shows 10 different GRNN models 
developed (GRNN1 to GRNN10) with 10 different 
input combinations and the corresponding r2 (for all 
data points) obtained for each Network. GRNN7 
with inputs (N, Fc, D50, D30, D10, σeff) was the best 
model to represent the correlation of predicting (qc) 
from SPT results, effective overburden and results 
of grain size distribution tests with a high value of 
r2 of 90%.  

Fig. 9 shows the influence factors for every input 
for GRNN3, GRNN4, GRNN7, GRNN8 that have 
r2 >90%, however, GRNN7 is considered the strong 
correlation between qc (CPT result) and N-value of 
SPT result because N-value has a high influence 
factor of 2.77 and is considered the last factor in the 
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other correlations (GRNN3, GRNN4, GRNN8). In 
addition, D50 is the last factor that has no effect on 
output results for GRNN7.   

Table 5 presents the data used in GRNN7 as 
input and the measured qc. Fig. 10 shows the 
comparison between the predicted qc from GRNN7 
and the actual measured values. 

 

 
Fig. 8 Trials used to predict qc from SPT results with 
r2 coefficient (%). 
 

 
Fig. 9 The weight factors for the correlation 
between qc (CPT result) and N (SPT result). 
 

 
Fig. 10 Comparison between predicted and measured qc 

for GRNN7. 
6.3 Comparison between Neural Networks and a 
Set of Traditional Methods 
 

Table 6 and Fig. 11 show some of the 
correlations used for estimation of qc from SPT 
results available in the literature. It is clear from the 
figure that the ANN model yields better prediction 
of qc.  
 

Fig. 11 Comparison between actual (measured) and 
predicted (qc) from SPT. 
 
7. CONCLUSION 

 
The paper studied the feasibility and efficiency of 
applying artificial neural networks (ANN) to 
predict ϕ (angle of internal friction), E (modulus of 
elasticity) and qc (CPT result) from SPT results (N 
values) which is one of the most commonly used in-
situ tests. A large amount of data for cohesionless 
soil was used that was collected from a project 
covering most of UAE. The effect of different input 
parameters was investigated and ANN results were 
compared with other available correlations. The 
following can be concluded:  

- The results of the ANN models developed for 
predicting ϕ, E and qc from N gave a very good 
agreement with actual results compared to some 
of the traditional methods available in the 
literature. 
- ANN model (GRNN2) with coefficient of 
correlation (r2= 97.6%) and inputs (N, σeff) was 
the best model to represent the correlation of 
predicting (tanΦ) from SPT results (N) and 
effective overburden pressure (σeff). 
- ANN model (GRNN2) with r2= 95.6% and 
inputs (N, D50) was the best model to represent the 
correlation of predicting (E) from SPT results and 
grain size distribution. 
- ANN model (GRNN7) with coefficient of 
correlation (r2= 90%) and inputs (N, σeff, Fc, D10, 
D30, and D50) was the best model to represent the 
correlation of predicting (qc) from SPT results, 
effective overburden pressure and results of grain 
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size distribution tests. 
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Table 5 The used data for estimation of qc (GRNN7) 
No. D50 (mm) D30 (mm) D10 (mm) Fc % N -SPT qC  (Mpa) EFFECTIVE PRESSURE (σeff ) (KPa) 
1 0.192 0.141 0.071 7.80 19 18.5 22.0 
2 0.141 0.104 0.065 9.00 10 26.8 26.0 
3 0.142 0.102 0.064 9.50 12 24.0 42.0 
4 0.150 0.108 0.066 8.50 16 38.2 58.0 
5 0.186 0.119 0.066 8.90 11 22.8 22.0 
6 0.150 0.108 0.067 8.00 12 26.0 26.0 
7 0.129 0.094 0.052 12.30 23 24.8 34.0 
8 0.139 0.102 0.065 9.00 18 26.3 42.0 
9 0.140 0.104 0.068 7.10 23 49.7 58.0 
10 0.177 0.127 0.067 8.70 7 13.9 23.0 
11 0.131 0.096 0.062 10.70 10 11.9 27.0 
12 0.137 0.099 0.061 11.30 20 27.6 43.0 
13 0.129 0.097 0.065 8.90 16 25.6 59.0 
14 0.187 0.133 0.064 9.60 4 6.5 25.3 
15 0.178 0.114 0.065 9.20 2 5.0 29.3 
16 0.123 0.093 0.064 9.60 1 10.0 37.3 
17 0.157 0.113 0.069 7.30 12 6.1 53.3 
18 0.137 0.101 0.065 8.80 14 53.0 77.3 
19 0.154 0.109 0.065 8.90 15 5.0 27.0 
20 0.177 0.126 0.068 8.30 10 7.2 31.0 
21 0.149 0.108 0.068 7.70 11 4.5 39.0 
22 0.135 0.098 0.061 11.20 6 14.5 55.0 
23 0.171 0.116 0.065 9.20 14 14.0 87.0 
24 0.163 0.113 0.064 9.60 5 11.0 23.0 
25 0.150 0.106 0.062 10.30 2 6.5 27.0 
26 0.153 0.108 0.063 9.80 11 16.0 59.0 
27 0.126 0.094 0.061 11.10 19 46.0 75.0 
28 0.160 0.113 0.068 7.80 13 10.0 23.0 
29 0.152 0.109 0.065 9.00 10 9.8 27.0 
30 0.163 0.116 0.066 8.60 7 18.0 51.0 
31 0.145 0.103 0.061 10.80 15 11.5 59.0 
32 0.062 0.025 0.003 52.10 40 51.0 75.0 
33 0.149 0.106 0.062 10.40 3 6.0 25.0 
34 0.149 0.109 0.069 7.20 4 4.5 29.0 
35 0.190 0.135 0.069 8.10 5 16.5 45.0 
36 0.123 0.093 0.062 10.60 9 12.0 61.0 
37 0.053 0.025 0.004 62.10 12 42.0 85.0 
38 0.212 0.130 0.069 7.90 3 7.5 27.0 
39 0.158 0.112 0.065 9.10 31 32.0 66.0 
40 0.126 0.095 0.065 8.80 36 40.0 82.0 
41 0.150 0.106 0.062 10.40 8 23.0 23.0 
42 0.147 0.106 0.065 9.00 8 31.0 43.0 
43 0.167 0.117 0.065 9.30 10 7.6 27.0 
44 0.158 0.114 0.067 8.30 11 19.5 31.0 
45 0.133 0.098 0.064 9.50 6 14.0 47.0 
46 0.163 0.113 0.064 9.60 9 9.0 25.0 
47 0.150 0.106 0.062 10.30 8 3.8 29.0 
48 0.183 0.139 0.064 9.80 9 13.0 45.0 
49 0.153 0.108 0.063 9.80 9 22.0 61.0 
50 0.126 0.094 0.061 11.10 16 32.0 77.0 
51 0.161 0.111 0.066 8.80 7 9.8 21.0 
52 0.134 0.099 0.064 9.30 7 19.0 25.0 
53 0.135 0.101 0.067 7.90 9 29.0 41.0 
54 0.165 0.116 0.063 10.10 6 12.0 21.0 
55 0.135 0.099 0.064 9.60 11 20.0 33.0 
56 0.143 0.103 0.063 10.00 11 21.0 49.0 
57 0.135 0.097 0.059 12.10 13 28.0 73.0 
58 0.132 0.097 0.063 10.30 17 5.0 27.0 
59 0.166 0.118 0.066 8.70 8 6.5 36.0 
60 0.169 0.122 0.064 9.70 9 20.0 53.0 
61 0.156 0.110 0.063 10.10 9 10.4 69.0 
62 0.184 0.131 0.063 9.90 2 8.0 27.0 
63 0.127 0.096 0.064 9.40 3 10.5 33.0 
64 0.151 0.107 0.062 10.30 15 29.5 65.0 
65 0.165 0.119 0.065 9.20 15 50.0 58.0 
66 0.166 0.114 0.067 8.20 4 9.0 27.0 
67 0.131 0.097 0.064 9.50 8 10.0 31.0 
68 0.152 0.108 0.064 9.70 9 22.0 39.0 
69 0.300 0.025 0.005 46.50 9 29.0 47.0 
70 0.150 0.107 0.065 9.20 5 7.5 26.0 
71 0.167 0.116 0.062 10.20 5 12.4 38.0 
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Table 5 (continued)     
No. D50 (mm) D30 (mm) D10 (mm) Fc % N -SPT qC  (Mpa) EFFECTIVE PRESSURE (σeff ) (KPa) 
72 0.144 0.101 0.058 12.40 10 13.8 62.0 
73 0.142 0.099 0.057 12.80 8 27.0 78.0 
74 0.135 0.098 0.061 11.20 7 8.0 27.0 
75 0.146 0.103 0.061 11.00 4 9.5 48.1 
76 0.147 0.107 0.066 8.30 18 18.0 64.1 
77 0.159 0.115 0.066 8.90 12 9.5 27.0 
78 0.139 0.099 0.059 11.80 14 11.0 36.0 
79 0.131 0.095 0.053 12.40 19 18.0 56.0 
80 0.141 0.103 0.065 8.80 15 12.0 25.0 
81 0.126 0.093 0.061 11.40 12 10.0 29.0 
82 0.132 0.097 0.062 10.60 35 19.0 37.0 
83 0.030 0.013 0.002 65.10 34 18.0 45.0 
84 0.153 0.105 0.057 12.60 12 10.0 25.5 
85 0.136 0.101 0.067 7.80 14 14.0 29.5 
86 0.143 0.102 0.061 11.00 14 16.0 45.5 
87 0.135 0.097 0.025 24.50 33 35.0 61.5 
88 0.136 0.100 0.064 9.30 47 42.0 77.5 
89 0.146 0.106 0.066 8.70 10 13.0 25.0 
90 0.122 0.091 0.059 12.60 11 6.5 22.0 
91 0.129 0.097 0.065 9.00 13 9.3 26.0 
92 0.129 0.094 0.059 12.30 11 34.0 34.0 
93 0.135 0.100 0.065 8.70 15 24.0 50.0 

 

 
Table 6 Different correlations for predicting 
(qc) from SPT results 

Researcher Correlation 
Kulhawy 

and 
Mayne, 
(1990) 

(𝐪𝐪𝐜𝐜 𝐩𝐩𝐚𝐚� )/𝐍𝐍      =  𝟑𝟑.𝟏𝟏𝟐𝟐 −
𝑭𝑭𝒆𝒆
𝟑𝟑𝟏𝟏.𝟑𝟑

     
 

(𝐪𝐪𝐜𝐜 𝐩𝐩𝐚𝐚� )/𝐍𝐍 =  𝟐𝟐.𝟑𝟑𝟑𝟑 𝐃𝐃𝟐𝟐𝟐𝟐
𝟐𝟐.𝟏𝟏𝟕𝟕   
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