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ABSTRACT: Accurate tidal prediction is essential for the design and construction of coastal and marine 

structures. In this study, an Artificial Neural Network (ANN) approach uses four algorithms (Radial Basis 

Function, General Regression, Multilayer Perceptron, and Cascade Correlation) were developed to estimate 

the tidal levels along the central coast of eastern Red Sea. A genetic algorithm was used to determine the 

adequate ANN structure and the optimal values of the parameters for the different algorithms of the ANNs. 

The obtained results confirm that the General Regression Neural Network (GRNN) model outperforms the 

other techniques. Moreover, the results verify that the GRNN model provides improvements in root mean 

square errors of 117.15%, 122.85%, 121.43%, and 127.15% over the Multilayer Perceptron Neural Network 

(MPNN) with three layers, MPNN with four layers, Cascade Correlation Neural Network (CCNN), and Radial 

Basis Function Neural Network (RBFNN), respectively for training and 19.26%, 20.50%, 11.8%, and 23.61% 

for testing. This investigation further indicates that the GRNN model can be useful as a supervised learning-

based tool for predicting tidal levels. 
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1. INTRODUCTION 

 

Tide is a phenomenon used to describe the 

periodic motion of water due to the differential 

gravitational forces of mostly the moon and sun 

upon the differential parts of the rotating earth [1]. 

Tide prediction plays an important role in the 

exploitation and utilization of sea resources, 

especially in the prevention and reduction of sea 

disasters. Accurate tidal level prediction is a crucial 

issue for the design of coastal and offshore 

constructions and coastal development [2]. 

Numerous models for tidal level forecasting 

have been carried out previously. In recent years, 

soft computing techniques, especially Artificial 

Neural Networks (ANNs), have become 

increasingly popular in sea-level data analysis and 

prediction attributes to their merits, such as 

nonlinearity, adaptivity, arbitrary approximation 

capability, and parallel information processing 

mechanism [3]. A fundamental principle in data 

modeling is to incorporate useful a priori 

information regarding the underlying data-

generating mechanism into the modeling process [4, 

5]. The topology of the neural prediction model is 

substantially important for predictive efficiency [6]. 

Various research works have been conducted to 

make the best use of soft computing techniques to 

analyze and predict tidal levels. Vaziri [7] compared 

the ability of ANNs with multiplicative 

autoregressive integrated moving average modeling. 

Deo and Chaudhari [8] used the three algorithms 

(back-propagation, cascade correlation, and 

conjugate gradient) of ANNs for predicting tides, 

and they found that the algorithm of cascade 

correlation involves the lowest training time and is 

suitable for adaptive training purposes. Also, Tsai 

and Lee [9] employed the Back-Propagation Neural 

Network (BPNN) along with a gradient descent 

method to predict tides at Taichung harbor and 

Mirtuor coast. Lee and Jeng [10] extended the 

diurnal and semi-diurnal tides to mixed tides, which 

are more likely to occur in the field. However, their 

model is only applicable for instant prediction and 

not for long-term prediction. Lee, Tsai, Jeng, and 

Shieh [11] and Lee [12] applied ANNs to predict the 

different types of tides and found that the technique 

can be effective. Steidley, Sadovski, Tissot, 

Bachnak, and Bowles [13] also utilized an ANN to 

improve the predictions of water levels where the 

performance of the tide charts is particularly poor. 

Rajasekaran, Lee, and Jeng [14] developed 

functional and sequential learning neural networks 

to predict tidal levels with a typhoon surge effect. 

Moreover, Rajasekaran, Thiruvenkatasamy, and 

Lee [15] constructed functional networks and 

sequential learning neural networks based on 

historical tidal observations. Makarynska and 
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Makarynskyy [16] used a Feed-Forward Neural 

Network with a Resilient Back-Propagation 

learning algorithm to predict tide levels. 

Rajasekaran, Gayathri, and Lee [17] also employed 

a promising Support Vector Regression (SVR) 

technique for storm surge predictions. Pashova and 

Popova [18] utilized the statistical parameters of 

tidal levels for daily mean sea-level prediction. A 

variable-structure radial basis function neural 

network constructed by sequential learning was 

proposed for tidal predictions [19]. Shetty and 

Dwarakish [20] predicted tide levels using the  

BPNN with the Levenberg Marquardt (LM) 

algorithm, and they concluded that ANNs can be 

used to predict tides at Karwar, West Coast of India  

successfully using short-term hourly tide level data. 

Mlybari, Elbisy, Alshahri, and Albarakati [21] used 

the Support Vector Machines (SVM) with different 

kernel functions and the BPNN to predict daily tides 

level along the Jeddah coast, Saudi Arabia, and they 

demonstrated that the SVM is better than the BPNN 

and has better generalization performance. Salim, 

Nayak, Mohanthy, Sasamal, Dadhwal, Dutt, and 

Rao [22] predicted tide levels using the BPNN and 

Non-linear Autoregressive with an Exogenous input 

network. Furthermore, Meena and Agrawal [23] 

also employed the ANN model with different 

learning algorithms for forecasting tidal levels using 

the limited measured data, and they found that the 

BPNN with the LM algorithm provides good 

correlations as compared to other algorithms. 

Okwuashi and Ndehedehe [24] used the SVM as an 

alternative model to the conventional least-squares 

model for predicting tide levels. 

This study aims to measure the accuracy of an 

ANN approach and uses different algorithms 

(Radial Basis Function, General Regression, 

Multilayer Perceptron, and Cascade Correlation) to 

predict daily tidal levels. To this end, a GA is used 

to determine the adequate ANN structure and 

optimal values of the parameters for the different 

algorithms of ANNs. The rest of this paper is 

organized as follows: Section 2 describes the study 

area and data and introduces the methodology, 

Section 3 demonstrates the results and discusses 

them, and Section 4 concludes the paper. 

 

2. MATERIALS AND METHODS 

 

2.1 Study Area and Data 

 

The Red Sea is a narrow seawater body in the 

Indian Ocean, lying between Asia and Africa and 

has an area of approximately 438,000 km2. It is 

approximately 2300 km long and 360 km wide at 

the widest part. The average depth is nearly 490 m. 

The maximum recorded depth in the central axis of 

the Red Sea is 2920 m, while a figure of 3040 m has 

also been reported [25]. In the south, the Red Sea 

connects to the ocean body through the Bab el 

Mandeb Strait and the Gulf of Aden. In the north, 

the Red Sea is leading to the Gulf of Suez and the 

Gulf of Aqaba. The Jeddah coast lies in the central 

Red Sea between 21.55° N and 21.85° N and 38.9° 

E and 39.3° E (Fig.1). 

 

 
 

Fig.1 Location of the study area. 

 

The sea-level change data refer to hourly 

observed sea-level changes during the years 2014 

to 2016. The data were obtained from the Saudi 

Aramco Company (Hydrographic Unit, 

Surveying Services Div., Protect Support and 

Controls Department) by a pressure type recorder 

(OSK LP2) during the years 2003 and 2004 at a 

depth of 3 m at Jeddah. The data return is greater 

than 95% with gaps filled by linear interpolation. 

The sea-level station (Jeddah station (21o 25' 52" 

N and 39o 09' 17" E) is situated at the entrance of 

the Obhur creek, a finger of the Red Sea 

extending inland. The creek serves as an ideal 

location for sea-level gauge installation as it is 

protected from the direct effects of wind and 

waves. The accuracy of the device is ± 0.5 cm. 

The timing error on the records is minimal (of the 

order of a few minutes per 45 days of chart 

length). 

 

2.2 Methods for Daily Tidal Levels Prediction 

 

Neural networks provide a random mapping 

between an input and an output vector by 

mimicking the biological cognition process of our 

brain. The network “learns” by adjusting the 

interconnections (called weights) between layers. 

When the network is adequately trained, it can 

generalize relevant output for a set of input data. A 

valuable property of neural networks is that of 

generalization, whereby a trained neural network 

can provide a correct matching in the form of output 

data for a set of previously unseen input data. 

Learning typically occurs by example through 

training, where the training algorithm iteratively 

adjusts the connection weights (synapses). 
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MPNN consists of an input layer one or more 

internal layers of hidden neurons and an output 

layer, which are fully interconnected. The network 

is repeatedly exposed to a set of training data, and 

errors were calculated based on the resulting 

outputs. These errors were used to adjust the 

weights and biases. This process will eventually 

lead to optimum and bias values that can mimic the 

model. There are several issues involved in 

designing and training, such as the number of 

hidden layers and the number of neurons in each 

layer and the size of the training data set. The 

learning rules used are the conjugate gradient 

algorithm to adjust weight values using the gradient 

during the backward propagation of errors through 

the network. The transfer functions (sigmoid and 

linear) were used as an activation function for the 

hidden layers and the output layer. 

The CCNN is similar to the MP neural network 

and consists of three layers. The CCNN was 

developed by Fahlman in 1990. Cascade correlation 

neural networks [26] are “self-organizing” 

networks. The network begins with only input and 

output neurons. During the training process, 

neurons were selected from a pool of candidates and 

added to the hidden layer. The transfer functions 

(sigmoid and linear) were used as activation 

functions for the hidden layers and the output layer, 

respectively. 

A RBFNN is a type of multilayer and feed-

forward neural network  [27]. This is a function 

approximation model that can be trained by 

examples to implement the desired input-output 

mapping. Due to their excellent non-linear 

approximation properties, RBF neural networks can 

model complex mappings, in which perceptron 

neural networks can only model utilizing multiple 

intermediary layers [28]. The structure of the 

RBFNN is similar to the multilayer forward 

network type, and it is a forward network that is 

made up of the input, hidden, and output layers. The 

input layer sends information to the hidden layer. 

The hidden layer that has RBFs is activated 

depending on the Gaussian activation function that 

relies on two-parameter centers and radii, which 

determine the structural behavior of the RBFNN. 

The output layer calculates the linear sum of values 

of the hidden neuron multiplied by the third 

parameter of the RBFNN, which is the weight [29]. 

In 1991, the GRNN was first proposed by 

Specht based on a standard statistical approach 

called kernel regression [30]. The GRNN is a kind 

of radial basis network that is often used for any 

regression problem [31]. The GRNN has four layers 

(input, hidden, pattern or summation, and decision 

layers). In the input layer, there is one neuron for 

each predictor variable. The input neurons 

standardize the range of the values by subtracting 

the median and dividing the interquartile range. The 

input neurons then feed the values to each of the 

neurons in the hidden layer.  The hidden layer has 

one neuron for each case in the training data set. A 

hidden neuron computes the Euclidean distance of 

the test case from the neuron’s center point and then 

applies the RBF kernel function using the sigma (σ) 

value (s) that determines the spread of the RBF 

function. The resulting value is passed to the 

neurons in the pattern layer. There are two neurons 

(denominator and numerator summation units) in 

the pattern layer. The decision layer divides the 

value accumulated in the numerator summation unit 

by the value in the denominator summation unit and 

uses the result as the predicted target value. When 

the GRNN is trained, it memorizes every unique 

pattern. This is the reason why it is a single-pass 

network and does not require any back-propagation 

algorithm. After training the GRNN with adequate 

training patterns, it will be able to generalize new 

inputs. 

 

2.2 Data Normalization and Criteria for ANN 

Performance 

 

A certain amount of data processing is required 

before presenting the training patterns to the 

network. In this study, a linear scaling was used. A 

linear normalization function within the values of 

zero to one is as 𝑺 = (𝑽 − 𝑽𝒎𝒊𝒏) (𝑽𝒎𝒊𝒏𝒎𝒂𝒙)⁄ , 

where S is the normalized value of variable V, and 

Vmin and Vmax are the variable minimum and 

maximum values, respectively. 

 The ANN model's performance was assessed 

in terms of the mean squared error (MSE), mean 

absolute error (MAE), mean absolute percentage 

error (MAPE), normalized mean square error 

(NMSE), root mean square error (RMSE), and 

correlation coefficient (R).  
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where Oi is the observed value, Pi is the 

predicted value, N is the number of observations, 𝑶
−
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is the mean value of the observations, and 


P  is the 

mean value of the predictions. 

 

3. RESULTS AND DISCUSSION 

 

In this study, the inputs to be used in 

constructing the ANN models are the previous daily 

tidal level observations. Evaluating the model with 

a different number of previous daily tidal level 

values led to the conclusion that the best result 

could be achieved when using only seven previous 

tidal level values. Adding more of the previous data 

to the inputs did not change the result. Following 

routine procedures for the selection of the best ANN 

suited to the daily tidal level data, different 

activation function options, and network 

architectures were compared [18, 31]. Several trains 

were performed to determine the number of hidden 

layers and the number of neurons in the hidden 

layers giving the best testing performance for the 

RBFNN, GRNN, MPNN, and CCNN. A Genetic 

Algorithm (GA) was utilized to adjust the optimum 

structures for the ANN models. Table 1 shows the 

training parameters of the ANN models. The 

sigmoid transfer function was used for the hidden 

layer of the ANN models to consider the 

nonlinearity of tidal levels. For the output layer, the 

activation function is the linear function. Once the 

activation function and the architecture are chosen, 

the final training process can begin. An optimization 

of the networks’ architectures was performed by 

analyzing the results during the training and the 

testing of the different ANN networks. The optimal 

training algorithm for each case was also 

determined. The model accuracies were evaluated 

using the MSE, MAE, MAPE, NMSE, RMSE, and R 

criteria. Table 2 summarizes the achieved results for 

the RBFNN, GRNN, MPNN, and CCNN and shows 

the MSE, MAE, MAPE, NMSE, RMSE, and R, which 

were obtained from the data subsets utilized in the 

training and in the testing procedures in every 

model. 

During the training stage of different ANNs, 

we noticed that all of them approximate well the 

data subset pattern. The training data subset is fitted 

better by the different neural network algorithms by 

comparing the results for the testing stage. 

For the exploration of an MPNN having 

optimum generalization ability, the MPNN model 

with different architectures (one and two hidden 

layers) was used. Among the MPNN with one and 

two hidden layers employed for this problem, the 

three-layer MPNN was found to be superior to the 

four-layer MPNN in the prediction of the daily tidal 

levels. Table 2 presents the model results for 

different MPNN architectures. This result 

confirmed the inferences made by Elbisy [32]. 

 

Table 1  Model parameters of the ANN models used for the training and testing. 
 

Models Parameters 

MPNN (3 layers) 
Training method: conjugate gradient algorithm; transfer function: sigmoid for the 

hidden layer and linear for the output layer; the number of hidden neurons = 8 

MPNN (4 layers) 

Training method: conjugate gradient algorithm; transfer function: sigmoid for the 

hidden layer and linear for the output layer; the number of hidden neurons in the 

first layer = 18; the number of hidden neurons in the second layer = 4 

CCNN 
Transfer function: sigmoid for the hidden layer and linear for the output layer; the 

number of hidden neurons = 11 

GRNN Kernel function: Gaussian; sigma (σ) = 0.0001:10 

RBFNN 
Transfer function: Gaussian activation for the hidden layer and linear for the output 

layer; radius = 0.26952: 392.819; lambda = 0.0144 : 7.32216 

 

Table 2  Performance of the ANN models. 

 

Methods 
Type of 

Data 

NMSE 

(m) 

MSE 

(m2) 

MAE 

(m) 

RMSE 

(m) 

MAPE 

(%) 
R 

MPNN 

(three layers) 

Training data 0.0136 0.0002 0.0086 0.0152 2.9372 0.993 

Test data 0.0414 0.0004 0.0148 0.0192 4.2607 0.992 

MPNN (four 

layers) 

Training data 0.0145 0.0002 0.0091 0.0156 3.1336 0.993 

Test data 0.0426 0.0004 0.0153 0.0194 4.3333 0.993 

CCNN 
Training data 0.0143 0.0003 0.0097 0.0155 3.3140 0.995 

Test data 0.0366 0.0003 0.0136 0.0180 3.5949 0.989 

GRNN 
Training data 0.0029 0.0001 0.0031 0.0070 1.0146 0.998 

Test data 0.0292 0.0003 0.0107 0.0161 3.2024 0.996 

RBFNN 
Training data 0.0150 0.0003 0.0099 0.0159 3.7717 0.992 

Test data 0.0447 0.0004 0.0174 0.0199 4.6815 0.992 
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Table 2 shows that all the models have lower 

NMSE, MSE, MSE, MAE, RMSE, and MAPE values 

in the training subset compared with the testing 

subset. Higher 𝑅 values were obtained, which 

varied from 0.989 to 0.998 for the four- ANN 

models. Comparing the results between different 

training algorithms, we found that the GRNN gave 

the minimum NMSE, MSE, MSE, MAE, RMSE, and 

MAPE and the maximum R during the training. 

Moreover, the best test results were obtained for the 

GRNN with 0.0292 m, 0.0003 m2, 0.0107 m, 0.0161 

m, 3.2024%, and 0.996 for the NMSE, MSE, MSE, 

MAE, RMSE, MAPE, and R, respectively. The 

choice of neural network for the prediction of the 

daily tidal levels should be given to the one that has 

the smallest training and testing errors as a global 

estimator. In this investigation, the GRNN 

exhibited higher accurate performance in the 

training and testing subsets.  The majority of the 

error values of the GRNN, the difference between 

the tidal-level measurements and the predicted tidal 

level values fall within the −2 cm and +2 cm range 

with RMSE falling within a 0.7–1 cm range. Figs. 2, 

3, and 4 graphically exhibit the achieved results for 

the GRNN. In contrast to the obtained results for the 

GRNN network, the RBFNN exhibited the lowest 

accuracy. 

The results show that the use of the GRNN 

significantly reduces the overall errors in the 

predictions of daily tidal levels. The variation in 

tidal-level between the observed data and the results 

of the GRNN model has the same trend. For training, 

the RMSE of the GRNN was an improvement of 

117.15%, 122.85%, 121.43%, and 127.15% over 

the MPNN (3 layers), MPNN (4 layers), CCNN, 

and RBFNN, respectively, and 19.26%, 20.50%, 

11.8%, and 23.61% for testing. 

 

4. CONCLUSION 

 

Tidal level prediction is an important issue for 

the design and construction of coastal and marine 

structures. For the exploration of an effective 

method to predict tidal levels along the central coast 

of the eastern Red Sea, four ANN models (RBFNN, 

GRNN, MPNN, and CCNN) were introduced. The 

different ANNs perform satisfactorily due to their 

main advantage of being a universal function 

approximators for even non-linear functions. The 

results indicate that the GRNN model performs the 

best for predicting tidal levels, and RBF is the 

poorest. When compared with the other models, the 

GRNN yielded an RMSE that was 117.15%, 

122.85%, 121.43%, and 127.15%  lower than those 

of the MPNN (three layers), MPNN (four layers), 

CCNN, and RBFNN, respectively, with respect to 

the training data; and 19.26%, 20.50%, 11.8%, and 

23.61%  lower with the respect to the test data. In 

this study, the results indicate that the GRNN model 

could be a suitable tool that can be utilized for tidal 

level predictions.

 

 
 

Fig. 2  Residual error between the measured and predicted tidal levels for the GRNN model.
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Fig. 3  Tidal level results predicted by the GRNN and the comparison results between the predicted and 

observed data. 

 

 
 

Fig. 4  Scatter plot of tidal levels values measured and predicted by the GRNN. 
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