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ABSTRACT: It is currently admitted that Repair Rate per kilometer (RR) is one of the most suitable tools to 
measure the fragility of lifeline structures after earthquake. Many models have been developed during last 
decades and use seismic parameters. These later are derived from ground motion prediction equations 
(GMPE). Most of the above mentioned models do not take into account the inherent variability of the GMPE. 
This paper aims to establish a methodology to derive the repair rate by taking account the variability 
associated with the GMPE. Through this methodology average as well as weighted average repair rates will 
be established. In order to apply the developed methodology, a model based on Peak ground velocity (PGV) 
is chosen. Through a sensitive case study it has been found that the weighted average repair rate is the most 
suitable. Indeed the obtained results show that the proposed approach leads to stable values of the repair rate 
whereas values obtained from other methods are not stable. Finally, weighted average values of RR obtained 
from the developed methodology are compared to conventional values obtained for a single GMPE and 
without uncertainty at the level of urban area (District of Tlemcen, Algeria). This comparative study shows 
that the developed methodology leads to interesting results. 
 
Keywords: Buried Pipeline, Peak Ground Velocity (PGV), Repair Rate (RR), Ground Motion Prediction 
Equation (GMPE).  
 
1. INTRODUCTION 

 
Repair Rate per kilometer (RR) is one of the 

most suitable tools to measure the fragility of 
lifeline structures after earthquake. Seismic 
analysis of the buried pipelines is important since 
the number of the required information used is 
very important. Indeed engineers needs to know 
which soil types and seismic actions are be used in 
the analysis. This will certainly avoid the total 
collapse of the lifeline and reduce the risk of 
explosion that will affect the entire network [1]. 

RR use seismic parameters which in turn are 
derived from numerous approaches described by 
attenuation relationship also known as GMPE 
(Ground Motion Prediction Equation).This later 
have great variability which was extensively 
studied and assessed in numerous recent papers, 
such as the NGA [2], NGAW2 [3] and RESORCE 
[4] studies.  

In this paper we propose a methodology that 
takes into account the inherent variability of the 
ground motion parameters. Through this 
methodology we try to understand how this 
variability will shape the form of the repair rate. 
This methodology will be developed considering a 
particular relationship between a Ground Motion 
Parameters (GMP) and RR, a number of GMPE 
that provide GMP and their associated variability. 
We then attempt to capture the effect of the 

inherent variability of GMPE on RR. In order to 
apply the developed methodology, a model based 
on Peak ground velocity (PGV) is chosen [5]. It 
worth noting that the developed methodology 
could be applied for other models that used other 
seismic parameters like for instance on the peak 
ground acceleration (PGA). 

The newly developed approach leads to the 
establishment of weighted average repair rate 
instead of unique repair rate. 

These weighted average values of RR are then 
compared to conventional values obtained for a 
single GMPE and without uncertainty. 
 
2. METHODOLOGY  
 

The repair rate (RR) is currently admitted as 
one of the most used tools to describe the fragility 
of lifeline structures. It is established through 
correlations between the observed number repairs 
per kilometer and the associated ground motion 
parameters ( GMP ) which could be either Peak 
Ground Acceleration (PGA), Peak Ground 
Velocity (PGV), Peak Ground Displacement 
(PGD) and other.  

𝑹𝑹𝑹𝑹 = 𝑹𝑹𝑹𝑹(𝑮𝑮𝑮𝑮𝑮𝑮) = 𝒇𝒇(𝑮𝑮𝑮𝑮𝑮𝑮) (1) 

For instance the model proposed in ALA 
database [5] gives RR knowing the value of PGV. 
This model is provided in Eq (2). 
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𝑹𝑹𝑹𝑹 = 𝒃𝒃.𝑮𝑮𝑮𝑮𝑷𝑷𝑪𝑪 (2) 

Where b=0.00108, c=1.173 and PGV is given in 
inch/s. 

The above relationships doesn’t mention a 
standard deviation (noted as σRR), it is obvious that 
there exists a huge uncertainty in the estimation of 
the repair rate.  

Thus it is important to assess σRR. 
The PGV is derived from GMPE, we use 

seismological and site parameters to estimate it.  
Let assume that we have n available GMPE 

(noted GMPEi, i=1,...,n). 
Each particular GMPE model#i will provide an 

estimate of GMPi . Obviously for the same 
seismological and site parameters and using the 
same relationship Eq. (1), two models of GMPE 
will give different values of repair rate: RR(GMPi). 

Thus the n available GMPE will provide n 
values of repair rate ( RR(GMPi), i = 1. . n ). The 
following part will give us an overall idea on the 
‘best estimate’ of the repair rate. 

Let compute the mean value of the n values 
(GMPi, i = 1. . n): 

𝑮𝑮𝑮𝑮𝑮𝑮������� =
𝟏𝟏
𝒏𝒏
� 𝑮𝑮𝑮𝑮𝑮𝑮𝒊𝒊

𝒏𝒏

𝒊𝒊=𝟏𝟏
 (3) 

Then RR(1) is calculated as follow: 

𝑹𝑹𝑹𝑹(𝟏𝟏) = 𝑹𝑹𝑹𝑹(𝑮𝑮𝑮𝑮𝑮𝑮�������) (4) 

This method is named method#1 
Let compute the mean value of RR(GMPi) from 

the n GMPi. This value will be referred in the 
following as RR(2) and named method #2.  

𝑹𝑹𝑹𝑹(𝟐𝟐) =
𝟏𝟏
𝒏𝒏
� 𝑹𝑹𝑹𝑹(𝑮𝑮𝑮𝑮𝑮𝑮𝒊𝒊)

𝒏𝒏

𝒊𝒊=𝟏𝟏
 (5) 

Both methods do not take into account the 
variability of each GMPE models. The two other 
methods consider the variability’s of the used 
GMP (through σGMP)  and the resulting estimation 
of σRR , except that it will be a bit complex; for the 
first one is fairly well known for "classical" GMP 
such as PGV for our case. The second one (σRR) is 
never given.If we consider each GMPE with its 
standard deviation the mean value of the GMP is 
defined by a particular GMPE model#i. 
𝐥𝐥𝐥𝐥𝐥𝐥(𝐏𝐏𝐏𝐏𝐏𝐏������𝐢𝐢) = 𝐥𝐥𝐥𝐥𝐥𝐥(𝐏𝐏𝐏𝐏𝐏𝐏𝐢𝐢) ± 𝛔𝛔𝐥𝐥𝐥𝐥𝐥𝐥(𝐏𝐏𝐏𝐏𝐏𝐏𝐢𝐢) (6) 

From this later we can evaluate the impact of 
the GMPE model#i variability on the RR(PGvi)  
estimates. In addition of PGVi we have also PGVi ∗
10σlog�PGVi�  and PGVi ∗ 10−σlog�PGVi�. 

We then obtain three value of repair rate: 
𝐑𝐑𝐑𝐑(𝐏𝐏𝐏𝐏𝐏𝐏𝐢𝐢) = 𝐑𝐑𝐑𝐑(𝐏𝐏𝐢𝐢𝟐𝟐), 
𝐑𝐑𝐑𝐑

�𝐏𝐏𝐏𝐏𝐏𝐏𝐢𝐢∗𝟏𝟏𝟏𝟏
𝛔𝛔𝐥𝐥𝐥𝐥𝐥𝐥�𝐏𝐏𝐏𝐏𝐏𝐏𝐢𝐢��

= 𝐑𝐑𝐑𝐑(𝐏𝐏𝐢𝐢𝟏𝟏)  

𝐑𝐑𝐑𝐑
�𝐏𝐏𝐏𝐏𝐏𝐏𝐢𝐢∗𝟏𝟏𝟏𝟏

−𝛔𝛔𝐥𝐥𝐥𝐥𝐥𝐥�𝐏𝐏𝐏𝐏𝐏𝐏𝐢𝐢��
= 𝐑𝐑𝐑𝐑(𝐏𝐏𝐢𝐢𝐢𝐢) 

Table 1. Derivation of RRijk  j, k = 1,2,3. 
 

  RRi11
= RRVi1 + σRR 

 Vi1
= PGV𝑖𝑖 ∗ 10σlog�PGV𝑖𝑖� 

RRi12 = RRVi1  

  RRi13 = RRVi1
− σRR 

  RRi21 = RRVi2
+ σRR 

Vi
= PGV𝑖𝑖  

Vi2 = PGV𝑖𝑖 RRi22 = RRVi2  

  RRi23 = RRVi2
− σRR 

  RRi31 = RRVi3
+ σRR 

 Vi3
= PGV𝑖𝑖 ∗ 10−σlog�PGV𝑖𝑖� 

RRi32 = RRVi3  

  
𝑹𝑹𝑹𝑹𝒊𝒊𝐢𝐢𝐢𝐢
= 𝑹𝑹𝑹𝑹𝐢𝐢𝟏𝟏𝐢𝐢
− 𝝈𝝈𝑹𝑹𝑹𝑹 

 
We also take into account the uncertainty in the 

RR estimate , if  σRR is available, so for each given 
GMPE model # i we obtain RR, RR - σRR and RR 
+ σRR . Thus for a single GMPE model we have 
nine estimates of repair rate (Table 1), so for n 
GMPE we will have L repair rate where: L=9*n  
(Fig.1) 

Noted as RRijk  where(i = 1 … n) , (j = 1 … 3) , 
(k = 1 … 3). 
 

 
 
Fig. 1 Flow chart for RR estimation accounting for 

some level of epistemic uncertainty. 
 

We can then compute the averaged RR as: 

RR(3) =
∑ ∑ ∑ RRijk

3
k=1

3
j=1

n
i=1

9n
 (7) 

This method is named method#3. 
This method take into account the inherent 

variability of the GMPE models, but not the degree 
of confidence of the GMPE model. For the 
method#4 we introduce weighting factors Wijk  to 
be applied to each estimateRRijk: 



International Journal of GEOMATE, Jan., 2017, Vol. 12, Issue 29, pp. 171 - 177 

173 
 

Wijk = ωiµjϑk (8) 
ωi (i = 1 … n) depend on the weight of GMPE.       
Assigning such weights usually relies on expert 

opinion [6] or alternatively on the value of σGMP, 
with the lowest variability being assigned the 
highest weight.µj (j = 1 … 3)defined as a weight 
of different expected probabilities for the 
considered estimates of GMP .Similarly, ϑk(k =
1 … 3)  is introduced as a weight to take into 
account the uncertainty in RR estimates. 
RR(4) = ∑ ∑ ∑ WijkRRijk

3
k

3
j=1

n
i=1   (9) 

Where WijkRRijk = Lijk. 
This method is named method#4. 
So we have 4 methods to estimate RR: 

RR(m), m = 1, . . ,4; then it is necessary to measure 
the degree of confidence of the fourth values. 
For RR(1) , as there is only one value then the 
standard deviation is ∆(1)= 0. Regarding RR(l)  l =
2,3,4 the standard deviation will be measured as 
follow: 

∆(2)= �1
n
∑ σGMP�RR(GMPi) − RR(2)�2n
i=1     (10) 

∆(3)=

� 1
9n
∑ ∑ ∑ σGMPi�RRijk − RR(3)�23

k
3
j=1

n
i=1   

(11) 

∆(4)=

� 1
9n
∑ ∑ ∑ σGMPiWijk�RRijk − RR(4)�3

k
3
j=1

n
i=1                 

(12) 

 
3.  INPUT USED IN THE CURRENT STUDY 

 
3.1 General statement 
 

Among the proposed parameters for assessment 
of the buried pipelines we choose the peak ground 
velocity (PGV) [7]. The number of GMPE used 
herein is three, thus n = 3 . After describing the 
GMPE models that will be used in this paper, we 
will present how we derive the inherent variability 
associated with RR. 
 
3.2 Model of Akkar & Bommer (2010) 
 

The GMPE established by [7] provides the 5%-
damped pseudo-spectral acceleration; it will be 
reported as model#1. The PGV, in units of cm/s 
through the following generic equation: 
log(PGV) = b1 + b2M + b3M² + (b4

+ b5M)log�Rjb
2 + b6

2

+  b7SS + b8SA + b9FN
+ b10FR + εσ 

(13) 

 
Where: M is the moment magnitude, Rjb is the 

epicentral distance, SS  and SA  are introduced to 
describe site effects and depend on the value of 
VS30. FN  and  FR are introduced to describe fault 

type. The constants bi, i = 1,2, . .10  and 
σlog(PGV) ≡ σ = �σ12 + σ22   provided in Table 2. 
σlog(PGV)= 0.2781. 
Table 2. Values of the GMPE coefficients for PGV. 

𝐛𝐛𝟏𝟏 𝐛𝐛𝟐𝟐 𝐛𝐛𝐢𝐢 𝐛𝐛𝟒𝟒 𝐛𝐛𝟓𝟓 
-2.1283 1.2144 -0.0813 2.4694 0.2234 

𝐛𝐛𝟔𝟔 𝐛𝐛𝟕𝟕 𝐛𝐛𝟖𝟖 𝐛𝐛𝟗𝟗 𝐛𝐛𝟏𝟏𝟏𝟏 
6.4144 0.2035 0.0848 -0.0585 0.0130 

𝛔𝛔𝟏𝟏 𝛔𝛔𝟐𝟐 
0.256 0.108 

 
3.3 Model of Derras (2014)  
 

This model is based on the artificial neural 
network approach presented in [8], and on the 
European RESORCE data set, referred as model#2. 
This RESORCE data set consists of 1088 
recordings from 320 earthquakes covering source-
to-site distances up to 547 km and a magnitude 
range from 3.6 to 7.6. The input parameters are 
Mw, Rjb, Depth (D) and focal mechanism (FM), 
and a continuous site condition proxy (Vs30). The 
standard deviation of this model is σlog(PGV) =
0.298. 
 
3.4 Sabetta & Pugliese (1996) 
 

Fabio Sabetta and Antonio Pugliese, 1996, 
proposed a GMPE as follow [10]: 
𝐿𝐿𝐿𝐿𝐿𝐿10(𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑎𝑎 + 𝑏𝑏.𝑀𝑀 + 𝑐𝑐. 𝐿𝐿𝐿𝐿𝐿𝐿10(𝑅𝑅2 +
ℎ2)1/2 + 𝑒𝑒1. 𝑆𝑆1 + 𝑒𝑒2. 𝑆𝑆2 ± 𝜎𝜎  (14) 

M is the moment magnitude; R is the epicentral 
or fault distance (Km), S1 and S2 dummy vari able 
for the site class (shallow, deep and stiff soil). For 
the constant and the standard deviation refer 
toTable 3. 
Table 3. Values of the GMPE coefficients for PGV. 
 

a b 𝐜𝐜 
-0.710 0.455 -1 

𝐞𝐞𝟏𝟏 𝐞𝐞𝟐𝟐 h 𝝈𝝈 
0.133 0.133 3.6 0.215 

 
Through the extent of GMPE available in the 

literature, we could choose more GMPE, except 
that the number of proposed model is sufficient to 
achieve the objective of this paper. 

Regarding the variability of the mean of value 
of PGV for the above models, we found that for a 
particular scenario: M = 6.5 , soft soil, depth=10 
Km and normal fault, values of PGV exhibit great 
difference (Fig. 2) even if we have imposed a 
unique set of seismological parameters and site 
conditions.  
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Fig. 2 Comparison of the 3 different models of the 
estimation of PGV 
Model 1: AKKAR and al. 
Model 2: DERRAS and al. 
Model 3: SABETTA and al. 
 
3.5 Derivation of 𝛔𝛔𝐑𝐑𝐑𝐑 
 

We compare between observations and 
predictions of RR. We use here the database of 
observed RR provided in [5]. This database 
contains several records of RR, we note RRobs to 
compare with RRpre  through Eq. (2) and the 
corresponding values of the GMP’s. Only 46 
observation points mentioned above gives RRobs 
and GMP’s in terms of PGV. Fig. 3 displays the 
variation of  RRpre with RRobs .  

 
 

Fig. 3 Comparison between the predicted RR and 
the observed one for the ALA data set. 
 

For that : 

σRR = �
1

NObs
��RRI

Obs − RRI
Pre�2

46

I=1

= 0.04 (15) 

 
This value shows the total variability of RR, 

which is indeed very significant. Also Fig. 3 
depicts the variation of the predicted repair rate 
versus the measured one. 
 
4. RESULTS 

 
4.1 Weighted mean estimate 

 
In this section the developed methodology 

together with input provided in previous section 
will be used to compute the repair rate defined in 
the second section.We give the largest weight to 
the model with the lowest variability, and the 
lowest weight to the largest variability model: 

σlog(PGV) = �
0.278
0.298
0.215

, thus   �
ω1 = 0.3
ω2 = 0.3
ω3 = 0.4

 (16) 

 
About the three branches associated with the 

median and median ± one standard deviation, they 
were assigned weights of 0.6 and 0.2, respectively, 
so that: 

�
µ1 = 0.2
µ2 = 0.6
µ3 = 0.2

 ,   �
ϑ1 = 0.2
ϑ2 = 0.6
ϑ3 = 0.2

   (17) 

 
4.2 Examples study 
 
Case study 1 
 

We take a case for a soft soil with: M = 6.5, 
soft soil (VS30= 200 m/s), depth=10 Km, Rjb =
10 Km  and normal fault. The nine values per 
model are then computed according to the general 
schemes (see Table 1). Fig 4 gives the variation of 
these values for the three models. The fifth case 
represents of the repair rate without taking into 
account the variability of the GMPE. It is obvious 
that neglecting variability could underestimate RR. 

 
 

Fig.4 Values obtained along the 27 values of RR. 
Case study 1 
 

As mentioned in section two, RR(m)   m =
1, . . ,4 are then computed. 
 
Method#1: 
𝑃𝑃𝑃𝑃𝑃𝑃������ = 9.223+9.446+8.896

3
= 9.188 inch/s  (18) 

The corresponding RR estimate according to 
RR relationship Eq. (2) is thus  
RR(1) = 0,0485  (19) 
Method#2: 
RR(2) = 0.0467+0.0501+0.0487

3
= 0,0486  (20) 

Method#3 and method#4 take into account the 
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variability related to both PGV and RR prediction 
equations, through the computation of the RRijk 
values as described in previous section. We found 
that: 
RR(3) = 0,0771  (21) 
 
RR(4) = 0,0661 (22) 
 
Case study 2 
 

We repeated the same approach considering 
know a stiff site located at the same distance and 
the same earthquake scenario considered in case 
study 1. 

The resulting mean value of PGV and the 
RR(m)   m = 1, . . ,4 estimates can be derived in a 
similar way: 

PGV������ =
6.549 + 5.911 + 5.352

3
=  5.937 inch/s (23) 

Leading to the following RR(1) estimate 
RR(1) = 0.0291  (24) 
RR(2) = 0.0326+0.0289+0.0257

3
= 0.0291  (25) 

Fig. (5) gives the distribution of RRijk. 
 
RR(3) = 0.0617  (26) 
RR(4) = 0.0493 (27) 
 

 
 

Fig.5 Values obtained along the 27 values of RR. 
Case study 2 
 
4.3 Comprehensive comparison between 

RR(m) estimates 
 

The previous estimating repair rate for both 
types of soils, mentioned in Eqs. (19)-(22) and 
(24)-(27) can be ranked as follows. 

For soft soil: 
RR(1) < RR(2) < RR(4) < RR(3) (28) 

For stiff soil: 
RR(1) = RR(2) < RR(4) < RR(3) (29) 

Estimating RR(4)  for soft and stiff soil cases 
remains in the middle position, whereas RR(1) , 
RR(2)  and RR(3)  can be lowest or highest. That 
result suggests that weighted average is more 
accurate than the other. 

We measured the degree of confidence of the 
fourth value through standard deviation (Eqs. (10)-
(12)). Results obtained (Eqs (30)-(31)) show that 
the method#4 model has intermediate value of 
standard values. 

For soft soil: 
∆(3)< ∆(4)< ∆(2) (30) 

For stiff soil: 
∆(3)< ∆(4)< ∆(2) (31) 

In order to generalize the result obtained from 
the previous case studies, we compared RR(m) and 
∆(m)  for larger number of cases. We have 
considered a total of 125 cases corresponding to 5 
different magnitudes (5, 5.5, 6.0, 6.5 and 6.8), 
different Rjb distances (5, 10, 15, 25, and 50 km), 
and 5 different Vs30 values (200, 250, 300, 500 
and 750 m/s) and compared with the mean of the 4 
estimates. The overall results displayed in Fig. 6 
for the 125 cases indicate that the method 
providing the closest estimate to the mean one is 
the method # 4. 
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(d) 

 
Fig. 6 Summary comparison for the 125 cases 
between the different of RR for each method [the 
corresponding estimate are plotted as a function of 
the mean estimate derived from the 4 models].  
(a)Method 1;   (b)Method 2;   (c)Method 3;   
(d)Method 4 . 
 
4.4 Comprehensive comparison between ∆(𝐦𝐦) 

estimates 
 

The associated uncertainties ∆(m), m = 2, . . ,4 is 
assessed for the 125 cases Fig. 7 in order to 
estimate the method-to-method variability of RR 
estimates according to: 

∆M
(m)= � 1

125
∑ �∆j

(m)�
2

125
j=1   (32) 

 

 
(a) 

 
(b) 

 
(c) 
 

Fig. 7 Summary comparison for the 125 cases of 
Δ(m) between the different of RR for each method. 

(a) : Δ (2) ;        (b) : Δ(3) ;        (c) : Δ(4). 
 
4.5 Best estimate of the repair rate 
 

Based on the previous comparative study we 
found that the best estimates of the repair rate is 
the weighted average RR(4) since its gives values 
which are the intermediate value between all other 
values and is confident since its standard deviation 
is generally the lowest. 

The last section will gives a general idea on the 
variation of the repair rate computed using 
weighted average RR(4) and for instance one of the 
GMPE at the level of an urban area. 
 
5. CASE STUDY AT THE LEVEL OF AN 
URBAN AREA 

 
As an example application, we simulate the 

geographical distribution of the repair rate at the 
scale of the city of Tlemcen (western Algeria). 
Even though the seismicity in this area, located 
600 Km west of Algiers, is historically less 
pronounced than in the coastal area, significant 
earthquakes cannot be ruled out, especially as there 
is a mapped fault (fault plateau of Terni) [9] 
located about 5 kms to the south of the city with a 
length of about 21 km allows to consider the 
possibility of events up to Mw magnitude 6.5. 
Such a "worst case" scenario has thus been 
considered as an illustrative example, and the 
weighted average repair rate has been estimated 
(method#4, as described in Eq. (9)). 

The town of Tlemcen is composed of 3 main 
sub-districts: Mansourah, Tlemcen and Chetouane 
with a well-known geotechnical information [11]. 
This figure 8 show also the variation of the repair 
rate predicted with the weighted average repair 
rate (method#4, Eq. (9)). 
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Fig. 8 Map of the mean predicted RR (using the 
models 4) for the city of TLEMCEN for a scenario 
earthquake of M =6.5 occurring on the southern 
fault (red line). 

 
6. CONCLUSION 
 

Repair Rate per kilometer (RR) is one of the 
most suitable tools to measure the fragility of 
lifeline structures after earthquake. Seismic 
analysis of the buried pipelines is important since 
the number of the required information used is 
very important. Indeed engineers needs to know 
which soil types and seismic actions are be used in 
the analysis. 

RR use seismic parameters which in turn are 
derived from numerous approaches described by 
by attenuation relationship also known as GMPE 
(Ground Motion Prediction Equation). This later 
has great variability which was extensively studied 
and assessed. 

In this paper a methodology that takes into 
account the inherent variability of the ground 
motion parameters has been developed. This 
methodology has been applied for the case where 
the seismic parameter is expressed in terms of 
Peak ground velocity (PGV). It worth noting that 
the developed methodology could be applied for 
other models that used other seismic parameters 
like for instance on the peak ground acceleration 
(PGA). 

The newly developed approach leads to the 
establishment of weighted average repair rate 
instead of unique repair rate. 

These weighted average values of RR are then 
compared to conventional values obtained for a 
single GMPE and without uncertainty. 
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