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ABSTRACT: Coastal aquifers are hydraulically connected to the sea and therefore susceptible to saltwater 

intrusion problems. This study proposes the utilization of a new surrogate model within coupled simulation-

optimization (S/O) model for the management of coastal aquifers subjected to density-dependent saltwater 

intrusion processes.  The simulation of the transient 3-dimensional density-dependent flow and transport model 

is based on the solution of an implemented numerical simulation model.  Direct coupling of the numerical 

simulation model into the multi-objective genetic algorithm (MOGA) is computationally expensive. Hence, 

the solution of the numerical simulation model with random input variables are used to train and test the support 

vector machine regression (SVMR) surrogate models for approximately simulating the flow and transport 

processes. The performances of the new surrogate models are evaluated using various performance evaluation 

criteria. The resulting validated SVMR surrogate models are coupled to the MOGA and implemented for an 

illustrative coastal aquifer with an aim to develop efficient coastal aquifer management strategies. Based on 

the objective functions, execution of S/O model presented a set of optimal groundwater withdrawal rates from 

the simulated aquifer. It also ensured salinity levels at the designated monitoring wells are constrained within 

specified limits. The efficiency of the new SVMR surrogate models is also demonstrated. Evaluation results 

suggested that the projected S/O model is an effective way of developing feasible and reliable coastal aquifer 

management strategies. It also enhances the possibility of solving more realistic large-scale problems and 

developing regional-scale coastal aquifer management methodologies.   
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1. INTRODUCTION 

 

Saltwater intrusion (SWI) is imposing a long-

term threat to the beneficial use of life-sustaining 

groundwater resources in coastal areas. Sustainable 

planning and management of coastal aquifers are 

decisive to ensure the future sustainability of these 

fragile resources. Simulation-optimization (S-O) 

models are one of the widely used methods for 

developing management methodologies for coastal 

aquifers subjected to SWI. The present study 

demonstrates an integration of a new yet efficient 

surrogate model into a coupled S-O framework for 

developing improved, and efficient optimal 

strategies for groundwater utilization from coastal 

aquifers.   

The S-O approach has been used to develop 

different coastal aquifer management models [1-6]. 

In many cases, due to enormous computational 

requirements and time constraints, numerical 

simulation models in an S-O model are substituted 

by surrogate models. Some of the common 

surrogate models used in developing aquifer 

management strategies via an S/O model includes 

Radial Basis Function [7], Artificial Neural 

Network [8, 9], Modular Neural Network [10], and 

Genetic Programming [5, 11]. However, the 

reliability and accuracy of surrogate model 

incorporated S/O models are always questionable. 

The present study focuses on developing and 

implementing robust support vector machine 

regression (SVMR) surrogate model assisted S/O 

model for optimal coastal aquifer management. 

In numerous surrogate model performance 

comparison studies, SVMR has been ranked as an 

accurate and most efficient predictive modeler [12-

14]. Despite several successful applications and 

numerous benefits, SVMR surrogate model has 

never been used for predicting SWI in aquifers. It is 

for the first time, SVMR surrogate models are 

trained for emulating a numerical costal aquifer 

flow and transport simulation model FEMWATER 

[15] used for predicting the impact of variable 

groundwater pumping patterns. The surrogate 

model is then integrated into a multi-objective 

genetic algorithm (MOGA) optimization algorithm 

within the R2016a MATLAB environment, to 

develop a multi-objective coastal aquifer 

management strategy. 

 

2. METHODS 

 

2.1 Coastal Aquifer Management Model  

  

     The proposed coastal aquifer management 

model was designed to sustainably withdraw 
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groundwater from installed production wells (PWs) 

and barrier wells (BWs). PWs were installed for 

withdrawing fresh groundwater for domestic 

utilization whereas BWs were installed near the 

shoreline to control SWI into the aquifer. Pumping 

from BWs induces a steeper hydraulic gradient 

towards the sea, averting encroachment of seawater 

into the aquifer [6]. Thus, two conflicting objectives 

i.e. maximizing total pumping from PWs and 

minimizing total pumping from BWs were 

considered. Monitoring wells (MWs) were installed 

for monitoring salinity level in the aquifer. 

Maintaining salinity levels at respective MWs 

within specified limits were incorporated as 

constraints in the SVMR-MOGA optimization 

framework. The mathematical expressions of the 

conflicting objective functions, constraints and 

bounds [16] are given by;  
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Pt
n  denotes pumping from nth PW at tth time 

and pt
m  denotes pumping from the mth BW at tth 

time. ci represents the saline concentration at the ith 

monitoring well at the end of management time 

period. () symbolizes the surrogate model 

replacing the numerical FEMWATER model and 

constraint (3) denotes coupling of the surrogate 

model within the S-O framework. M, N and T are 

the total number of PW, BW and a total number of 

time steps in the management model. Inequality (4) 

represents the constraints imposed to keep salinity 

concentrations within specified limits at the 

respective MWs. Inequality (5) and (6) represents 

the upper and lower bounds of pumping from PWs 

and BWs respectively. Pumping bounds for both the 

PW and BW was set between 0 – 1300 m3/day. The 

constraints imposed as permissible limits on 

concentrations (assumed to be a conservative 

pollutant) were c ici max,  of 425 mg/L at MW1, 

c jci max, of 510 mg/L at MW2 and  

c kci max,  of 625 mg/L at MW3. 

 

2.2 The Numerical Simulation Model 

 

The 3D numerical simulation FEMWATER 

model was used for simulating pumping induced SI 

processes into an illustrative costal aquifer system. 

FEMWATER model (FM) allowed simulation of 

density-dependent coupled groundwater flow and 

transport processes in an aquifer system. An 

illustrative study area, similar to [16] containing of 

a portion of a multi-layered coastal aquifer was 

modelled using FEMWATER. The length of the 

coastline (sea side boundary) was 2.13 km and the 

other two boundaries were of 2.04 km (Boundary A) 

and 2.79 km (Boundary B) respectively. The 2.53 

km2 study area incorporated 5 BWs, 8 PWs and 3 

MWs. The study area with specific good locations 

is presented in Fig. 1.  

 

 
 

Fig.1 Illustrative study area with specific PW, BW 

and MW locations 

 

      The sea side boundary was assumed to be a 

constant head and constant concentration boundary 

having a concentration of 35000 mg/L. The other 

two boundaries of the study area were taken as no-

flow boundaries. The modelled aquifer was 

discretized into triangular finite elements having an 

average element size of 150 m. The element size 

near the wells was set to 75 m. The total aquifer 

depth was 60 m, divided equally into 3 layers.   A 

constant vertical groundwater recharge of 0.00054 

m/d was specified over the entire study area. The 

screening interval of all the wells was taken from 

the second and third layers of the aquifer. The 

compressibility and velocity of water were taken as 

6.69796 X 10-20 md2/kg and 131.328 kg.md 

respectively.  Other key parameters used for aquifer 
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simulation are listed in Table 1. 

      The 3D transient simulation was instigated from 

an initially steady state condition of the aquifer, 

achieved via constant pumping of 300 m3/day from 

3 of the PWs for a period of 20 years only. The 

resulting heads and salinity concentrations after 20 

years were used as initial conditions for the 

specified period of 4 years (4th-time step) where 

pumping from all production and barrier wells were 

instigated. 

 

Table 1 Key parameter values for model 

development 

 

 

 

2.3 Development of Support Vector Machine 

Regression Surrogate Models 

 

      SVMR methodology is a statistical tool 

employed for numeric data prediction utilizing 

support vector machines (SVM). SVMs have been 

applied in various engineering fields because of its 

attractive features and encouraging empirical 

performance [17].  A comprehensive discussion on 

SVM is presented in [18-20] and only a brief 

theoretical background is given below. For a given 

training dataset ),( yixi  where xi  is the ith input 

pattern and yi  is the parallel target output and

Ryi . The aim of the SVMR is to find a function 

)(xf  that has most ɛ deviation from the targets 

yi  for all training data, and also is at flat as 

possible [21]. A SVM takes advantage of the kernel 

function to map the input data onto a high-

dimensional feature space. Later, linear regression 

is performed in the high-dimensional feature space. 

As a result, non-linear problems are addressed in a 

linear space through non-linear feature mapping. 

The final prediction function used by an SVM is: 
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where, 𝟎 < 𝜶𝒊 < 𝑪 

where,  i is Lagrange multiplier, and xi  is a 

feature vector corresponding to a training object. 

The components of vector  i  and the constant b 

are optimized during training. C is the penalty 

factor, which regulates the trade-off between the 

flatness of f  and the extent up to which deviations 

greater than   can be accepted. The kernel 

function is one of the most important parts in the 

SVMR model. Commonly used kernels are linear, 

Gaussian, polynomial and sigmoid. The Gaussian 

function kernel is the most commonly used kernel 

because of its effectiveness and speed [17]. 

Mathematical expression of the Gaussian function 

is given by: 

).
2

exp(),( x jxix jxiK    (8) 

where  is the parameter of the kernel function with 

representing independent variables? Key 

parameters that control SVMR problems are the 

cost function C is the radius of the insensitive tube 

 and the kernel parameter. These parameters are 

dependent on each other so altering the value of one 

parameter leads to a change in another parameter. 

For the present study, Gaussian kernel was used, 

with  ,  C  and   having a value of 0.60, 6.49 

and 0.001 respectively. Evaluating other values of 

these fundamental parameters were beyond the 

scope of this study, although, other parameter 

values may have provided more accurate results. 

     Five hundred data sets were generated out which 

400 was used for training and 100 were used for 

testing the trained SVMR models. The training set 

was used to construct the SVMR models while the 

testing set assessed the prediction capabilities of the 

trained model. 500 transient pumping (inputs) were 

obtained from uniform sampling distribution using 

Latin Hypercube Sampling (LHS) having an upper 

bound of 1300 m3/day and lower bound of 0 m3/day. 

The resulting salt concentration at each monitoring 

well was obtained from FEMWATER simulation 

after each set of pumping from all production and 

barrier wells are fed to the model as inputs. Each 

FEMWATER simulation took approximately about 

4-5 minutes to converge. 500 sets of pumping and 

resulting output concertation were assembled by 

running the simulation model 500 times. These 

input-output patterns were used for surrogate model 

training and testing purpose. The SVMR models 

were constructed to learn from the training data 

presented to them with the intent of capturing the 

functional relation between the pumping-

concentration data sets. 3 SVMR surrogate models 

namely M1, M2 and M3 were constructed for 

predicting salinity concentrations at MW1, MW2 

and MW3 respectively. 

2.4 Performance Analysis of Surrogate Models 

Properties Values 

Hydraulic 

Conductivity 

x direction 15 m/d 

y direction 7.5 m/d 

z direction 1.5 m/d 

Bulk density 1600 kg/m3 

Longitudinal dispersivity 50 m 

Lateral dispersivity 25 m 

Molecular dispersion coefficient 0.69 m2/d 

Density reference ratio 0.025 

Soil porosity 0.46 

Compressibility 
8.5x10-15 

md2/kg 
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     Mathematical expressions of the performance 

evaluation indices (PEI’s) are presented from Eq. 

(9) to (12). 
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where, co
k

 and c p
k

 are observed (from FM) and 

predicted values of saltwater concentrations 

respectively, co and c p  are observed and 

predicted saltwater concentration mean values 

respectively and K represents total data points. 

 

2.5 Linked simulation-optimization approach 

 

A flowchart for the linked surrogate assisted 

S/O framework in given in Fig. 2.  The trained and 

tested SVMR models were used in the S/O model 

as a set of binding constraints for salinity 

concentration prediction purpose. Multi-objective 

Genetic algorithm (MOGA) was used as an 

optimization tool.  MOGA has been used efficiently 

in solving multi-objective optimization problems 

[5, 16]. When using MOGA optimization tool, 

population size was set to 1500, 5200 generations, 

crossover fraction of 0.8 and mutation probability 

of 0.02. 

 

3. RESULTS AND DISCUSSION 

 

3.1 SVMR Model Prediction Capabilities     
       

      The error estimates during the training and 

testing phases are given in Table 2. The 

performances of the SVMR models at the training 

and testing phases for M1, M2 and M3 in terms of the 

4 evaluation criteria showed similar trends. RMSE, 

and MSE values for concentrations at M1, M2 and 

M3 at both the stages were substantially smaller. 

 

 

Fig. 2 Flowchart for the linked S/O model with 

optimal solution validation stage 

 

Table 2 Performance evaluation results 

 

 

During the training stage, SVMR model has a 

smallest RMSE value of 0.238 accomplished for M2 

and highest RMSE of 0.428 attained for M3. 

Comparing RMSE values of SVMR models at the 

testing stage, the lowest 0.323 is obtained for M2
 

and highest value of 0.449 is achieved for M1. 

Accordingly, MSE values of the SVMR models are 

comparatively smaller. R2 and NES values do not 

significantly differ for the three models and have 

values close to 1. NSE value of 1 presents a perfect 

estimate with no errors [22]. A model can be 

considered accurate if the calculated NSE value is 

greater than 0.8 [23]. The NSE values for M1, M2 

and M3 were greater than 0.8 indicating that it can 

Phase PEI’s M1 M2 M3 

Training MSE 0.164 0.057 0.184 

RMSE 0.405 0.238 0.428 

R2 0.997 0.997 0.989 

NSE 0.990 0.990 1.00 

Testing MSE 0.202 0.105 0.187 

RMSE 0.449 0.323 0.432 

R2 0.994 0.993 0.989 

NSE 0.990 1.000 1.000 
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reliably be used for SI prediction. A model’s good 

performance in the testing phase is an indication of 

its accuracy in prediction and hence its practical 

utility [24]. Hence, the observed good performance 

of SVMR models at the testing stage establishes its 

credibility, suggesting accurate results when used 

for prediction purposes. 

 

3.2 Optimal Groundwater Pumping Solution Set 

 

After evaluating the prediction performances, 

the M1, M2 and M3 replaced the original 

FEMWATER model in the S-O framework 

instituted for obtaining optimal groundwater 

pumping rates from the PWs and BWs installed in 

the simulated coastal aquifer. The execution of the 

SVMR-MOGA coastal aquifer management model 

presented a set of optimal pumping solution. The 

resulting Pareto-front from the executed S-O model 

is given in Fig. 3. Depending on the relative 

importance each of the two objective functions in 

the management model, a set of pumping solutions 

can be chosen and implemented for optimal and 

sustainable utilization of groundwater from the 

simulated aquifer.  

 

 

 

 

Fig. 3 Optimal Pareto-front from the executed 

SVMR-MOGA model 

 

The selected optimal pumping solutions from 

the Pareto-front will ensure optimal pumping and 

maintaining salinity levels at the MWs within 

specified limits which were the major aim of the 

proposed management model.  The Pareto optimal 

solutions also show the conflicting nature of the two 

objectives. For example, if the pumping for 

beneficial use increases beyond 30500 m3/day, the 

marginal increase in a barrier well-pumping 

increases exponentially. 

 

3.3 Validation of Optimal Pumping Solutions 

 

     To establish the validity of the resulting optimal 

solution, the salinity concentration obtained from 

the SVMR surrogate models were compared with 

the salinity concentration obtained from the original 

FM. Five random solutions from the optimal 

Pareto-front were chosen and the salinity 

comparison results are presented in Table 3.  

 

Table 3 Optimal pumping solution validation 

results 

 

c ici max,

at MW1 ≤ 

425 mg/L 

c jci max,

at MW2 ≤ 510 

mg/L 

c kci max,

at MW3 ≤ 625 

mg/L 
SVMR FM SVMR FM SVMR FM 

423.8 422.9 509.2 507.9 624.2 623.9 

424.5 423.5 509.4 508.3 623.6 622.1 

423.2 422.2 508.9 506.5 624.6 623.5 

425.0 425.3 508.4 508.9 623.1 622.6 

424.7 423.6 509.4 508.3 624.7 622.0 

 

     It was observed that the salinity concentration 

values from both the modeling tools were very close 

to each other. It was also observed that the optimal 

pumping values satisfied the specified constraints at 

monitoring locations. Also, the optimal solutions 

converged to the specified upper bound of the 

concentrations constraint. The validation results 

established that the SVMR surrogate models 

predicted the salinity concentrations at MWs 

accurately and can be utilized for developing 

coastal aquifer management strategies.  

 

4. CONCLUSION 

 

     This paper presents an efficient and feasible 

SVMR model assisted coupled S/O model for the 

optimal sustainable management of coastal aquifers 

subjected to SWI. The S/O model maximizes 

pumping from PWs, and minimizes pumping from 

BWs while maintaining salinity concentrations at 

respective MWs within specified limits. Utilized 

SVMR surrogate models have effectively 

approximated density-dependent SWI processes in 

the simulated aquifer. The execution of the 

developed management model presented a set of 

optimal pumping patterns for both the PWs and 

BWs. An optimal pumping solution set can be 

chosen and implemented for the sustainable 

utilization of the modelled coastal aquifer. The 

implementation of the developed management 

model has the potential to aid in developing 

regional-scale coastal aquifer management 

strategies while ensuring computational efficiency, 

thus making it feasible to address much larger study 

areas. In future, it would be beneficial to compare 
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the prediction performances of SVMR with other 

available surrogate modeling methods and also 

apply the established management model on a real 

case study area. 
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