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ABSTRACT: Excessive materials are being manufactured, and along with it are the waste products that are 
being produced due to the rapid growth of industries. In the Philippines, wastes such as fly ash and damaged 
ceramics are being considered as a construction material since there are recent researches that proved their 
properties are comparable to cement and aggregates. In this study, compressive strength tests (ASTM C 39) 
were conducted to obtain the compressive strength of the concrete mixed with varying amounts fly ash and 
waste ceramics. Moreover, specimens were also subjected to varying days of curing to assess their strength 
development. Due to the availability of a wide range of data, machine learning model, such as the k-nearest 
neighbor, were also considered; it can predict an unknown target parameter without consuming tremendous 
time and resources. Thus, this study aimed to provide a k-nearest neighbor model that will serve as a 
reference to predict the compressive strength of concrete while incorporating waste ceramic tiles as a 
replacement to coarse aggregates while varying the amount of fly ash as a partial substitute to cement. The k-
nearest neighbor model used was validated to ensure the predictions are acceptable. 
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1. INTRODUCTION 
 

Waste utilization has been one of the 
considerations in the construction industry towards 
sustainability. With the growing demand in the 
construction industry, excessive materials are 
being manufactured, and along with it, are the 
waste products that are being produced. In the 
Philippine context, there is an existing problem 
with regards to fly ash since the country mostly 
relies on coal-based electricity generation. There is 
also no ash industry in the Philippines that exists to 
consume all the fly ash wastes produced, which 
amounts to approximately 300,000 tons per annum 
[1]. As a result, the fly ash utilization in the 
country is underdeveloped. Moreover, most of the 
construction and demolition wastes worldwide are 
composed of ceramic materials [2] and these waste 
materials are only disposed of in landfills. 

To address sustainability, these wastes, such 
as damaged ceramic tiles and fly ash, are being 
considered as a construction material since there 
are recent researches that proved their properties 
are comparable to cement and aggregates [3-8].  

Due to the availability of a wide range of data 
gathered during the experiment, machine learning 
model, such as the k-nearest neighbor, were also 
considered; it can predict an unknown target 
parameter without consuming tremendous time 
and resources. The k-nearest neighbor (k-NN) 
algorithm was used because it is mainly employed 

for measuring the similarity of a set of objects 
based on some measures of distance and is one the 
oldest pattern classifier methods with no required 
pre-processing [9]. Thus, this study aimed to 
provide a k-nearest neighbor model that will serve 
as a reference to predict the compressive strength 
of concrete while incorporating waste ceramic tiles 
as a replacement to coarse aggregates while 
varying the amount of fly ash as a partial substitute 
to cement. 
 
2. METHODOLOGY 
 

Mix design of the specimens was prepared 
referring to the American Concrete Institute 
standards [10]. Moisture content, specific gravity, 
and absorption tests [11-12] of the components of 
concrete and as well as its unit weight and voids 
[13] were the prerequisites in preparing for the mix 
design. The summary of the results is shown in 
Table 1. In this study, the tests are similar to 
previous studies [14-15] for the formulation of the 
mix design of the study. Similarly, chemical 
analysis of fly ash used in the experiment was 
conducted [16]. 

This study incorporated the use of waste 
ceramic tiles in replacing gravel as the coarse 
aggregates in the design mix with the following 
substitutions: 0%, 18.25%, 37.5%, 56.25% and 
75%. The percentages of replacements of ceramic 
tiles were patterned after the previous studies [8, 
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17]. On the other hand, Type 1 Portland Cement 
was also replaced by fly ash in this study 
considering five replacements: 0%, 12.5%, 25%, 
37.5% and 50%. All replacements of both waste 
ceramic tiles and of fly ash were in terms of mass 
percentage. The control mix had pure cement and 
gravel. Considering the replacements of waste 
ceramic tiles and fly ash and the output from the 
Design of Experiments (DOE) conducted, a total 
of 17 mixes were prepared in this study.  

 
Table 1. Summary of material properties 

Description Results 

The dry rodded density of gravel 1567.839 kg/m3 

Specific Gravity of Cement 3.150 

Specific Gravity of gravel 2.812 

Specific Gravity of sand 2.505 

Moisture Content of gravel 0.349% 

Moisture Content of sand 1.566% 

Absorption of gravel 1.639% 

Absorption of sand 2.765% 

Fineness modulus of Sand 2.760 

Chemical Compounds of Fly Ash 

Silicon Dioxide (SiO2) 49.6% 

Aluminum Trioxide (Al2O3) 26.7% 

Ferric Oxide (Fe2O3) 4.26% 

Calcium Oxide (CaO) 8.2% 

Magnesium Oxide (MgO) 5.9% 

Sulfur Trioxide (SO3) 0.83% 

 
In order to have a systematized way of 

labeling the specimens, Mix IDs were used in the 
study. The acronyms “F” and “C” refer to fly ash 
and waste ceramic tiles, respectively. The number 
that immediately follows the acronym signifies it 
percentage replacement to either cement or gravel. 
For example, the mix ID “F50C75” refers to the 
mix with 50% fly ash, 50% Type 1 Portland 
Cement, 75% waste ceramic tiles and 25% gravel. 
Mix IDs are shown in Table 2: 
 
Table 2. Mix IDs of the specimen 

Mix No. Mix ID Fly Ash 
Content 

Ceramic 
Tiles 

Content 
M1 F0 C0 0.00% 0.00% 
M2 F50 C0 50.00% 0.00% 
M3 F50 C 37.5 50.00% 37.50% 
M4 F25 C37.5 25.00% 37.50% 

M5 F37.5 C 
18.75 37.50% 18.75% 

M6 F25 C0 25.00% 0.00% 
M7 F25 C 18.75 25.00% 18.75% 
M8 F12.5 C 37.5 12.50% 37.50% 
M9 F37.5 C37.5 37.50% 37.50% 

M10 F0 C37.5 0.00% 37.50% 
M11 F37.5 C56.25 37.50% 56.25% 

M12 F12.5 C 
18.75 12.50% 18.75% 

M13 F25 C56.25 25.00% 56.25% 

M14 F12.5 C56.25 12.50% 56.25% 
M15 F50 C75 50.00% 75.00% 
M16 F0 C75 0.00% 75.00% 
M17 F25 C75 25.00% 75.00% 

 
Washed sand and river gravel were used as the 

conventional fine and coarse aggregates of 
concrete, respectively while substituting the later 
with glazed ceramic tiles. Although replacements 
were considered in the coarse aggregates of 
concrete, it was ensured that the sizes in each mix 
still adhere to the standards through performing 
sieve analysis [18] in all mixes. The waste ceramic 
tiles were manually crushed, if needed, and sieved 
to ensure that the grain size distribution follows 
the standard stipulations [18]. 

Considering 25-100 mm slump and a 
maximum size of 19.0 mm of the aggregates, the 
estimated mixing water that should be used is 184 
kilogram per cubic meter of concrete. In addition, 
no chemical admixture was used in the study. 

Furthermore, the water-cement ratio that was 
considered in this study upon further interpolation 
is 0.478. It was derived by having a target nominal 
compressive strength of 28 MPa, which is 
typically used in the industry. This water-cement 
ratio was kept constant for all mixes. A total of 
306 specimens were prepared to accommodate the 
curing at 3 ages: 7, 28 and 56 days. 

Moreover, compressive tests were performed 
after the specified day of curing to determine the 
physical properties of the specimens. The load was 
applied to the specimen, and the maximum load 
that the specimen could carry was recorded. With 
this, the compressive strength was computed by 
simply dividing the maximum compressive load 
that the specimen was able to carry by its average 
cross-sectional area. 

Once the data are available k-NN modeling 
commenced. Each k-NN model consists of a data 
case having a set of independent variables labeled 
by a set of dependent outcomes, the research k-NN 
model classification of is shown in Fig. 1. The 
independent and dependent variables can be either 
continuous or categorical. In the study the 
dependent and independent variables are shown in 
Table 3: 

 
Table 3. Dependent and Independent Variables 

Dependent Variable(s) Independent 
Variable(s) 

1. 7-Days Compressive Strength 
2. 28-Days Compressive Strength 
3. 56-Days Compressive Strength 

1. Fly Ash % 
2. Ceramics %  

 
The k-nearest neighbor model used was 

validated to ensure the predictions are acceptable. 
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Fig. 1. k-NN model classification for the study 
 

3. RESULTS & DISCUSSION 
 
3.1 Compressive Strength  

 
The compressive strengths of the conventional 

mix at 7, 28 and 56 days of curing periods were 
21.645 MPa, 28.302 MPa, and 28.722 MPa, 
respectively. This implies that the 28-MPa target 
nominal strength was achieved. Moreover, F50C0 
(M2) and F25C75 (M17) consistently achieved the 
minimum and maximum compressive strengths 
among all mixes at all ages. The results are shown 
in Table 4: 
 
Table 4. Compressive strengths of all mixed 

MIX 
No. MIX ID 

Compressive Strengths 
(MPa) 

7-day 28-day 56-day 

M1 F0 C0 21.65 28.30 28.72 
M2 F50 C0 19.07 26.34 28.41 
M3 F50 C 37.5 21.68 27.85 33.88 
M4 F25 C37.5 27.29 37.21 39.20 
M5 F37.5 C 18.75 24.97 32.14 35.44 
M6 F25 C0 25.51 33.88 38.09 
M7 F25 C 18.75 27.78 34.51 38.95 
M8 F12.5 C 37.5 30.96 37.44 41.57 
M9 F37.5 C37.5 25.07 33.83 35.97 

M10 F0 C37.5 29.00 32.14 38.00 
M11 F37.5 C56.25 27.46 34.49 38.32 
M12 F12.5 C 18.75 26.00 34.06 37.90 
M13 F25 C56.25 25.15 34.17 38.28 
M14 F12.5 C56.25 27.53 27.23 36.36 
M15 F50 C75 24.53 33.21 41.78 
M16 F0 C75 24.86 33.95 39.66 
M17 F25 C75 32.06 38.11 44.70 

Minimum 19.07 26.34 28.41 
Maximum 32.06 38.11 44.70 

 

Compressive strength tests were conducted at 
three curing periods: 7 days, 28 days and 56 days. 
A sample plot is shown in Fig. 2. This was done in 
order to have a representation of the compressive 
strengths of all mixes at early, nominal and late 
stages for further analysis. The results are shown 
in Fig. 3. 

It could be inferred that M17 or F25C75 
consistently had the highest compressive strengths 
among all the other mixes at all stages. On the 
other hand, M2 or F50C0 had the least 
compressive strengths at all periods. However, it 
could be seen that at the 56-day period, the 
compressive strength of F50C0 is very close to but 
not greater than the strength of the conventional 
mix. This tremendous increase in the strength of 
F50C0 from its 28-day strength is due to the 
pozzolanic reaction. 

 
Fig. 2. 7-Days Compressive Strength (Early) 

 

 
Fig. 3. Strength development of the mixtures 

 
All compressive strengths at the 56-day period 
exceeded the strength of the conventional mix. 
Similarly, it is due to the pozzolanic reaction 
brought by fly ash and the waste ceramic tiles as 
well. Furthermore, it could be observed from the 
same Fig. that there is a slight difference between 
the projection of the strength development of M14 
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or F12.5C56.25 and of the conventional mix (M1 
or F0C0). 

The conventional mix attained 30.76%, 32.7% 
and 1.48% increase in the compressive strength 
from 7 to 28, 7 to 56 and 28 to 56 days of curing 
periods, respectively. The 1.45% increase from 28 
to 56 days was observed to be the least percentage 
increase among all mixes; next to it was the 
compressive strength of F25C37.5 with only 
5.36% increase. In terms of the least percentage 
increase at 7 to 28 and 7 to 56 days, F12.5C56.25 
and F0C37.5 provided the least increase with only 
1.10% and 31.03%, respectively. 

The maximum percentage increase at 7 to 28, 7 
to 56 and 28 to 56 days of curing periods were 
observed at F50C0, F50C75 and F12.5C56.25 with 
38.12%, 70.32%, and 33.55%, respectively. The 
tremendous increase of F50C75 from 7 to 56 days 
was brought about by the pozzolanic reaction since 
it was established that both waste materials used, 
fly ash and glazed ceramic tiles, possessed 
pozzolanic properties.  

A sample of the pozzolanic reaction is shown in 
Fig.s 4 and 5 where Scanning Electron Microscopy 
(SEM) images were captured at 7 and 28 days of 
curing periods. As seen in the Fig.s, less inter-
particle voids were present at the SEM image of 
the latter. This suggests that fibrillation occurred as 
the curing period was increased, which is an effect 
of the pozzolanic properties of both fly ash and 
waste ceramic tiles (WCT). 

 

 
Fig. 4. SEM images of the F25C75 (M17) at 7-

day curing period (from left to right: 500X, 100X 
and 1500X magnifications) 

 

 
Fig. 5. SEM images of the F25C75 (M17) at 28-

day curing period (from left to right: 500X, 100X 
and 1500X magnifications) 

 
The 28-Days compressive strength as optimized. 

The percentage replacements of fly ash and waste 
ceramic tiles (labeled “%F” and “%C”, 
respectively) were accounted along with its 
corresponding treated data. In terms of the 
optimization constraints, %F and %C were 
maintained to be in range at 0 to 0.5 and 0 to 0.75, 

respectively, while maximizing the compressive 
strength (labeled “f’c”). Table 5 shows the 
summary of the optimization constraints 
considered: 
 
Table 5. 28-Days Strength optimization constraints 

Name Goal Lower 
Limit 

Upper 
Limit 

% F is in range 0.00 0.50 
% C is in range 0.00 0.75 
f'c maximize 26.34 38.11 

 
With the optimization, it could predict the 

resulting compressive strength given the 
percentage replacements of fly ash and waste 
ceramic tiles. With 0.92 desirabilities, Equation 1 
was the generated. 
 
 
 
 
Where:  
f’c = predicted strength (MPa); 
%F = percentage of fly ash; 
%C = percentage of waste ceramic tiles. 
 

The effects of cement and coarse aggregates 
modification as previously discussed were also 
observed –an increase in %FA resulted to an 
increase in strength up to an optimum amount and 
an increase in %WCT yielded an increase in 
strength. The combination of both waste materials 
was gradually producing higher compressive 
strengths. 
 
3.2 k-Nearest Neighbor Algorithm Model 
 

k-Nearest Neighbor (k-NN) algorithm is one 
of the simplest classification algorithms and it is 
one of the most used learning algorithms [19-20]. 
k-NN predictions are based on the intuitive 
assumption that objects close in distance are 
potentially similar, it makes good sense to 
discriminate between the K nearest neighbors 
when making predictions [21]. 

In the k-Nearest Neighbor (k-NN) algorithm, 
the following were considered, shown in Table 6: 
 
Table 6. Considerations in the k-Nearest Neighbor 
(k-NN) algorithm 

Description Value 
Sample Size 75% 
Testing Size 25% 

v-Value 10 
Seed 1000 

 
 

f’c = 30.01565 + 33.35915 %F + 
0.98742 %C + 8.83664 %F %C – 
79.86914 (%F)2 + 2.53592 (%C)2 

 

(Eq. 1) 
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The resulting k-optimal is 2, which means that 
there are 2 closest training samples were selected 
based on a distance metric and voted for the most 
number of samples per class. 

To validate, the Observed Compressive 
Strength vs. Observed Compressive Strength by 
the k-Nearest Neighbor (k-NN) algorithm were 
compared. A line that shows equality between the 
variable observed (Experimental Data) on the 
horizontal axis of a diagram and the variable 
predicted (k-Nearest Neighbor (k-NN) algorithm) 
on the vertical axis. The plots should be near the 
equality line to ensure the predictions are 
acceptable, shown in Fig. 6. 
 

 
Fig. 6. Equality line of the k-Nearest Neighbor 

(k-NN) algorithm Model 
 
As seen in Fig. 6, it could be said that although 

there were some data points far from the equality 
line, most of the data points were still close to the 
projected line. This means that there was a small 
residual observed between the experimental data 
and the theoretical or projected data. 

 
4. CONCLUSIONS & 
RECOMMENDATIONS 

 
Based on the test results, the conventional mix 

attained its target nominal strength with 28.302 
MPa. Among all modified mixes, F50C0 and 
F25C75 resulted in the least and highest 
compressive strengths at all ages with 26.343-MPa 
and 38.112-MPa nominal strengths, respectively. 
All mixes had an increasing nominal compressive 
strength when waste ceramic tiles replacement was 
also increased except for the mix with 12.5% fly 
ash replacement, where the strength decreased 
from 37.5% to 56.25% waste ceramic tiles 
substitution. In terms of cement variation, all 
combinations showed an increasing nominal 
strength up to an optimum amount. Based from the 

experimental data, all combinations have shown an 
optimum amount of 20% to 30% fly ash 
replacement except for the mix with 37.5% waste 
ceramic tiles replacement, which had an optimum 
amount of 10% to 20% fly ash substitution. 
Moreover, all combinations with 50% fly ash 
substitution attained less compressive strengths 
relative to mixes with 0% fly ash replacement. 

The pozzolanic reaction has played a major 
role in the strength development of the modified 
mixes considering that both waste materials used, 
ceramic tiles and fly ash, possessed pozzolanic 
properties. 

The k-Nearest Neighbor (k-NN) algorithm 
provided a model that can predict based on the 
intuitive assumption that objects close in distance 
are potentially similar. The Observed Compressive 
Strength vs. Observed Compressive Strength by 
the k-Nearest Neighbor (k-NN) algorithm was 
compared, and their plots are near the equality line, 
thus, acceptable. 

To further improve the conduct of the study, it 
is recommended to provide superplasticizers or 
other additives in the mixes in order to address the 
high absorption rate of ceramic tiles that lead to 
poor workability. In this way, it could result to 
better applicability in the construction industry. In 
addition, the fly ash and waste ceramic tiles 
replacement could be limited to 0% to 30% and be 
extended to 0% to 100% substitutions. 
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