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ABSTRACT: The process of enumeration and construction of orthogonal arrays has been extensively studied 

and several methods to develop and implement them have been proposed. There is, however, a gap in the 

literature when deciding the most appropriate orthogonal array to be tailored to a specific situation. Romero 

and Murray [1] presented a combinatorial-based technique to list all the possible isomorphic arrays for a given 

design type and undertook the enumeration of almost all of them (up to 100 runs). The size of the orbits under 

consideration (the number of isomorphic arrays or possible arrangements for the same design type) was found 

very large. Certainly, the decision to select the most suitable array for a given situation becomes a non-trivial 

and computationally intensive task. Some attempts to overcome this problem have been proposed [2] [3], yet 

a context-based approach has not fully been taken into consideration. In this paper, an engineering-based 

approach is presented to select orthogonal arrays according to their isomorphism and experimental 

implementation. The arrays were simulated and tested using a protective relay and its associated circuits. 

Although still in the process of testing, preliminary results show important performance advantages over 

traditional techniques such as crossed arrays, combined arrays and response surface methods. 

Keywords: Experimental Design, Orthogonal Arrays, Engineering Design, Combinatorics. 

1. INTRODUCTION

The present study deals with combinatorial 

designs (orthogonal arrays) and their 

implementation in engineering parameter design. 

An orthogonal array is a multiset whose elements 

are the different combinations of factor levels 

(discrete values of the variable under study), having 

well-defined orthogonality properties [4]. The 

applied methodology blends the fields of 

engineering, statistics, combinatorics, group theory, 

and backtrack search. The focus is on the selection 

of nearly-optimal orthogonal arrays according to an 

engineering-based approach rather than a pure 

mathematical framework. The theoretical 

background based on linear algebra is presented in 

section 2. Section 3 introduces the fundamentals of 

orthogonality from a pure mathematics point of 

view. Section 4 presents the selection of the arrays. 

A case study is shown in section 5 alongside 

statistical considerations and analysis presented in 

sections 6 and 7 respectively. 

2. THEORETICAL BACKGROUND

Define FND to be the set of all fractional factorial 

designs (FFDs) with design type .),(= dsNU

Here, N is the number of treatments 

1},{0,= −sS   and FND FF :{=  is a

dN   matrix, with each .}SFij   Define F  in 

FND of strength t  and frequency   if any tN 

sub-matrix of F  contains all possible row vectors 

with the same frequency [4]. A FFD with strength 

1t  is called an orthogonal array. Now define a 

mixed design type ),(= 1
1

m
a

m

a
ssNU   with

;=
1= k

m

k
ad  and define 1},{0,= −kk sS   so 

that .|=| kk Ss  Also, define the set of classes as 

.},1,{= 1111 kkkk aaaaaJ +++++ −−   

Similarly, define kj SR = ; where k  is the unique

index with kJj . 

 Let FND be the set of all fractional factorial 

designs with design type ,U hence FF :{=  is a 

dN   matrix, with jij RF   .}, ji  Define

now a Mixed Orthogonal Array (OA) to be an F

in FND with elements from ksss ,,, 21   with two 

elements or more, size N, d factors, and |=| Ssk  

levels. This array is described as an orthogonal 

array of the design type .),(= 1
1

m
a

m

a
ssNU 

 Consider two FFDs to be isomorphic if one can 

be obtained from the other by performing a 

sequence of column, row and symbol permutations. 

Denote the set of experimental units by 

,},,,{= 21 kyyy   and denote the runs as 

.},,{ 1 N   Also, define a treatment to be the 

individual combinations of factor levels applied to 
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an experimental unit in each run. The set of all 

possible treatments is identified as ;  whereas its 

elements (actual treatments) are described with 

lower-case Latin letters such as i. 

 Let   be a set of experimental units (EUs) and 

  a set of possible treatments for these units. Let’s 

define a design as a map   from   to , ie 

.:  → Each experimental unit iy  is 

assigned to a treatment  i  through  . The 

map  →:  is called a treatment mapping. 

Thus, )(= ii y .  

Assume two factors 1  and 2  with a number 

of levels 
1
s  and 

2
s  respectively. Let 

1
W  be a 

subspace of 
SV
1
  and 

2
W  a subspace of .

2

SV  The 

subspace 
1
W  becomes 

⊥ 0
11

= VVW S

 , and the 

subspace 
2

W  becomes ,= 0
22

⊥VVW S

  where 

0V  is the subspace of 
SV  with a basis }{ 0u  and 

.1=dim 0V  Moreover, it follows that 

,|=|dim
11
 sV S ,|=|dim 1

11
− sW  

,|=|dim
22

 sV S
 and |=|dim 1

22
− sW . 

 Let }{ 1 Nuu   be an orthogonal basis for 

;SV thus, for each treatment i  in ,  

,= iii ruu   with .= Nri Moreover, if ji   

then ji uu ⊥  and the set of vectors }:{ iiu  is 

an orthogonal basis for .W  

 Let 1  and 2  be factors, and let 
1
W  and 

2
W  be the corresponding subspaces. Thus, if 

every combination of factor levels 1  and 2  

occurs on the same number of runs, then, In 

addition, let 1  and 2  be factors and ,
1

SV ,
2

SV

,
1
W

2
W  the corresponding vector spaces and 

subspaces. Thus, =
21

 VV +  
21

 WWVo   

and =)(dim
21

SS VV  +  

.1)(1)(1
21
−+−+  ss  

 

2.1 Analysis of Variance 

 

Suppose that the comparison of N  different 

treatments for the vector of treatments   needs to 

be done. This experiment would be represented by 

a mathematical model as the one shown in equation 

(1):  

 

,)(= ,,, isjsisiiy  +++                              (1) 

 

where },{1,2, Ni   and ;},{1,2, dj   

  is the overall mean effect, and the term i  is the 

random error component made up of all sources of 

unexplained variability such as uncontrolled factors 

and differences between EUs. si,  represents the 

main effect of factors i  with S  levels, and 

sjsi ,,   is the term for the interaction among the 

factors. 

Let R  and W  be subspaces of ,SV and let 

Y  be the vector of output combinations. Define the 

sum of squares for R  as the norm (squared length) 

of the orthogonal projection of Y  into R  written 

as .
2

YPR  Similarly, the sum of squares for W  is 

given by .
2

YPW  

From the previous definitions, if follows that the 

sum of the orthogonal projections for R  and W  

equals to: 

 

.=
222

YPYPY RW +                                   (2) 

 

Thus, equation (2) is the total sum of squares 

and measures the overall variability in the data. 

Moreover, the expressions 
2

YPW  and 
2

YPR  

are the sum of squares of treatments and residuals 

respectively. 

The mean square for treatments and error are 

calculated through the quotient between their sum 

of squares and respective dimensions:  

 

.dim/=
2

WW YP                                               (3) 

  

.dim/=
2

RRYP                                                 (4) 

 

A close examination of the expected values of 

the mean squares given in equations (3) and (4), 

leads to express the expected mean square as  

 

1)(/=
2

−dNMS RErrors YP .= 2               (5) 

 

Following the previous discussion, the equation 

(1) is rewritten according to a vector of observations 

,Y the corresponding expectation )(YE  and the 
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errors  , having 0=)(E  and .=)( 2evar

Thus,  

 

+)(= YY E                                                 (6) 

 

,)=(var);(= 2

YEC  YY+                        (7) 

 

where )(YEC  is the mean deviation from   

within the corresponding class .kJ  

The overall mean   and all of the components 

of EC )(y  are estimated using the Generalised 

Least Squares (GLS) method. It is assumed, for all 

of the models, that all the random variables (called 

from now on design parameters) are mutually 

independent and have expectation zero. In addition, 

it is also assumed that the variance 
2  of the error 

terms is the same in all of the different factor 

combinations [7]. 

 

3. ABOUT ORTHOGONALITY 

 

Consider a linear model with two explanatory 

variables 1X  and 2X , N  observations (subjects 

or experimental units), where Nj ,1,=  . Thus 

[8],  

 

,ˆˆ= 22110  +++ jjj XXy                           (8) 

  

where ijj XXX −11 =ˆ . 

 

The variances and the covariance are obtained 

as follows:  

,=)(
2

0
N

bV


                                                         (9) 

,
)cos(1

1
=)(

2

2

1
21

NS
bV



 







−
                     (10) 

,
)cos(1

1
=)(

2

2

2
22

NS
bV



 







−
      

             

0,=),(0,=),( 210 bbbb o  

  

;
)cos(1

cos
=),(

2

21
221

NSS
bb















−

−
                 (11) 

  

where  

 

,ˆ=,ˆ= 2

2

12

2

2

1

12

1 jj XNSXNS  −−
 

  

( )( ) 
,

ˆˆ

ˆˆ
=cos

1/2
2

2

2

1

21

jj

jj

XX

XX




                         (12) 

 

and all of the sums are over .,1,= Nj   

Note that 1S  and 2S  are measures of the spread 

against the desired design point towards the 1X  

and 2X  directions; while   is the angle between 

the design vectors 
T

NXXXX )ˆ,,ˆ,ˆ(=ˆ
112111   

and .)ˆ,,ˆ,ˆ(=ˆ
222212

T

NXXXX   The aim here is 

to reduce the variances given in Equation (10) as 

much as possible. This is done by either making 

2

1S  and 
2

2S  large values or making cos
2

 as 

small as possible. At the extreme, when 0=cos  

the n-dimensional design vectors 1X̂  and 2X̂  are 

at right angles; that is, they are orthogonal to each 

other. The aforementioned condition can be met by 

making the sum .0=ˆˆ
21 jj XX Moreover 

because cos  is an actual measure of the 

correlation between the two vectors 1X  and ,2X  

implies that they are uncorrelated. That is, an 

orthogonal array satisfies the condition that factors 

represented through columns are uncorrelated. 

This is one of the main features in parametric 

design discussed in this paper.  

 

4. THE SELECTION OF THE ARRAYS 

 

When dealing with two isomorphic designs, say 

21 FF  , it is expected changes in the order of the 

runs (and eventually, how the actual experiment 

will be conducted). Similarly, using two non-

isomorphic designs (orbit representatives) it is 

expected some changes of the actual treatments i  

to be implemented. When the calculations of the 

sum of squares are performed (main effect and 

residual), it is not possible to discriminate subtle 

changes in the order of the runs. However, the 

detection of changes in the treatments through the 

corresponding sum of squares can be done. 

When dealing with fractional factorial designs, 

the equation (7) is used in its matrix equivalent as 

follows:  

 

.=  +Xy                                                     (13) 

 

,y the outcome and the vector of errors  have both 

dimensions .N Furthermore, an array X  has 
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kN   elements, whereas the vector of coefficients 

  has Nk   elements. The estimators of the 

coefficients  are calculated using the least square 

technique as: 

 

.)(=ˆ 1 yTT XXX −                                          (14) 

 

Note the importance of the term 
TT XXX 1)( −

 in 

equation (14), as by minimizing this term allows 

creating optimal factorial designs. 

For a full capacity estimation of the 

experiments, the design should permit the 

estimation of all main effects and some interactions. 

Feasible design options for the orthogonal arrays 

are the maximum strength compatible with run-size 

and factor specifications, and choosing an array 

which maximizes the D-efficiency for the variables 

and replicates of the full model. That is, the 

selection of the arrays will depend upon two 

criteria; namely, strength is the best and D-

efficiency is the best. For the first criterion, all 

representative arrays (non-isomorphic) having a 

specific design type U are generated. From this 

initial selection, the arrays with full estimation 

capacity of the main effects are chosen. Finally, the 

selection of the array with maximum D-efficiency 

is done. Regarding the former criterion, some arrays 

are randomly generated (according to the 

corresponding orbit size) for further improving the 

D-efficiency by using the modified Fedorov 

algorithm [11]. Then, the one that performs the best 

is chosen. 

 

5. THE CASE STUDY 

 

Successful operation of a power system, an 

industrial operation, or an isolated electric motor, 

mainly depends on the maintenance of an adequate 

insulation for all living and conducting parts [9]. 

For an electric system to continue to deliver its 

desired performance against a potential fault, it its 

very important that the section on fault be isolated 

promptly from the rest of the system. It is the task 

of the protective relays and their associated circuit 

breakers to accomplish this. 

In this case study, a statistical approach to 

engineering design is used by dealing with a 

simplified version of a protective relay (see Figure 

1 adapted from [9] and [10]). 

The device under consideration is an 

electromechanical switch which operates when the 

winding circuit is closed. When doing relay design, 

two main types of problems arose: the relay’s 

mechanical construction and its electrical 

performance. Consider in this study that the design 

parameters (DPs) are random variables which are 

classified as follows:  

 

   

 
   

Fig. 1 Hingeless Relay.  

   

• DPs associated with the mechanical circuit (for 

instance, armature and spring.)  

• DPs associated with the magnetic circuit (for 

instance, coil, permeability features, magnetic 

reluctance, and ampere-turns.)  

• DPs associated with the electrical circuit (coil 

resistance, supplied voltage, and current.)  

The main functional requirement is a 

satisfactory contact performance. This functional 

requirement is physically represented as the 

resistance vs force relationship of contact alloys and 

their variations with surface conditions. Thus, the 

resultant force requirements relay on the mechanics 

of the contact springs associated with a pulling 

force. 

 

6. STATISTICAL CONSIDERATIONS 

 

6.1 Mechanical circuit 

 

This circuit includes the contacts, armature to 

operate the magnetic field, and the spring. Note that 

mechanical parameters defined by the physical 

geometry of the device are random variables (beam 

length, cross-sectional area, a moment of inertia, 

and contact area). This circuit accounts for the total 

load variation (𝑝̅, 𝑆𝑝).Using the second Newton’s 

Law, the total load variation equals the contact 

force variate (𝑝̅1, 𝑆𝑝1
)  plus the deflection force 

variate (𝑝̅2, 𝑆𝑝2
). 

 

6.2 Electrical circuit 

 

The random variables for this system are voltage 

source (because of voltage variations) and coil 

resistance (due conductor resistivity and geometry, 

among other factors.) Define the voltage variable as 

E  and the resistance .R  The model considers the 

power delivered by a battery of 30V. The voltage 

standard deviation  ,ES is estimated as 2% of the 

nominal voltage; therefore (𝐸̅, 𝑆𝐸) = (30,0.6)[V] . 

In the following discussion, consider the random 

variable coil resistance to be determined by the 
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random variables resistance and length of the wire. 

The wire length is a random variable made upon the 

wire diameter, its insulation thickness variability, 

and the spool geometry. 

 

6.3 Magnetic circuit 

 

The magnetic field strength is a function of coil 

features, magnetic characteristics of the core 

material, the return circuits, and gap features. Thus, 

the relations among associated random variables are 

expressed in terms of the vector for flux density 

(induction) B and the vector for the field intensity 

H. 

The design parameters are as follows:  

• 1L : center line length of the return path, [cm].  

• 2L : center line length of the coil core, [cm].  

• a : cross-sectional area of the return path and coil 

core, [cm]
2

.  

• x : main gap separation when the armature is 

closed, [cm].  

• A : effective pole face area multiplied by 0  

(permeability of the air), [cm] .2
 

The pulling force is given by [139]:  

 

.

)(

2
=

2

0

2

A

x
RA

NI
F

+


                                             (15) 

 

7. ANALYSIS 

 

The orthogonal arrays were implemented 

according to magnetic, mechanical, and electric 

design parameters of the relay. These results are 

summarised as follows: 

 

7.1 Mechanical Circuit 

 

Random Variables: contact force, deflection force. 

 

• Contact force: 

 (𝒑̅𝟏, 𝑺𝒑𝟏
) = (𝟐. 𝟔𝟎, 𝟎. 𝟐𝟎) [𝐠]   

• Deflection force: 

 (𝒑̅𝟐, 𝑺𝒑𝟐
) = (𝟓𝟑. 𝟏𝟒, 𝟔. 𝟕𝟓) [𝐠]  

 

7.2 Electrical Circuit 

 

Random Variables: a voltage source, coil 

resistance, and wire length (measured by its overall 

diameter 𝑂𝐷).  

 

• Voltage: 

 (𝑬̅, 𝑺𝑬) = (𝟑𝟎, 𝟎. 𝟔)[𝐕]  

 

 

• Coil resistance: 

 (𝝆̅, 𝑺𝝆) = (𝟎. 𝟎𝟗𝟎𝟓, 𝟎. 𝟎𝟎𝟐𝟐𝟔)[𝛀 𝐢𝐧⁄ ]   

• Overall diameter: 

 (𝑶𝑫̅̅ ̅̅̅, 𝑺𝑶𝑫) = (𝟎. 𝟎𝟑𝟓, 𝟎. 𝟎𝟎𝟎𝟏)[𝐢𝐧] 

• Coil geometry: 

(𝒕̅𝑳, 𝑺𝒕𝑳
) = (𝟖𝟒. 𝟖𝟔, 𝟐. 𝟓𝟏)  

• No of layers of turns: 

(𝑳̅𝑵, 𝑺𝑳𝑵
) = (𝟑𝟕. 𝟕𝟏, 𝟏. 𝟏𝟐)  

• Wire length: 

 (𝑳̅𝒕, 𝑺𝑳𝒕
) = (𝟒. 𝟑𝟖𝟒, 𝟓𝟕. 𝟔𝟎)[𝐢𝐧] 

 • Resistance:  

 (𝑹̅, 𝑺𝑹) = (𝟑𝟗𝟔. 𝟕, 𝟕. 𝟏𝟏𝟏𝟕)[𝛀] 

 • Coil current: 

 (𝑰̅, 𝑺𝑰) = (𝟎. 𝟎𝟕𝟓𝟔, 𝟎. 𝟎𝟎𝟐𝟔)[𝐀]  

  

7.3 Magnetic Circuit 

 

Random Variables: Gap with the relay coil 

energized, cross-sectional area, the center of the line 

length of the return path, center line length of the 

coil core, effective pole face area, permeability, un-

operated gap. 

  

• Gap:  

(𝑿̅𝑮, 𝑺𝑿𝑮
) = (𝟎. 𝟎𝟒𝟓𝟕, 𝟎. 𝟎𝟎𝟎𝟒𝟐)[𝒄𝒎]   

• Cross-sectional area:  

(𝒂̅, 𝑺𝒂) = (𝟎. 𝟎𝟏𝟗, 𝟎. 𝟎𝟎𝟓𝟑)[𝒄𝒎]𝟐 

• Centre of the line length of the return path:  

(𝑳̅𝟏, 𝑺𝑳𝟏
) = (𝟓. 𝟑𝟖𝟕, 𝟎. 𝟏𝟐𝟐𝟑)[𝒄𝒎] 

• Centre line length of the coil core: 

(𝑳̅𝟐, 𝑺𝑳𝟐
) = (𝟎. 𝟕𝟓𝟒, 𝟎. 𝟎𝟎𝟖)[𝒄𝒎]  

• Effective pole face area: 

(𝑨̅, 𝑺𝑨) = (𝟎. 𝟎𝟏𝟔, 𝟎. 𝟎𝟎𝟏)[𝒄𝒎]𝟐 

• Permeability: 

(𝑹𝟎, 𝑺𝟎) = (𝟐. 𝟖𝟗𝟒, 𝟎. 𝟑𝟏𝟔𝟐)  

• Un-operated gap: 

(𝑿̅, 𝑺𝑿) = (𝟎. 𝟏𝟏𝟑, 𝟎. 𝟎𝟏𝟑)[𝐜𝐦]   

• Random variable to calculate the pulling force: 

(𝑹𝟎 + 𝑿 𝑨⁄ ) = (𝟗. 𝟗𝟓𝟎, 𝟎. 𝟑𝟐𝟖) 

  

7.4 Design to a specified reliability 

 

This case study deals with a level of reliability 

required for the relay of 𝑅 > 0.999999  calculated 

using the method shown in this paper. By keeping 

all of the previous design parameters unchanged 

(except for the level of voltage E ), the specified 

level of R can be worked out. This is done starting 

from the given random variable load: (𝝆̅, 𝑺𝝆) =

(55.74,6.76)[g]. 
Note that the force needed to depress the spring 
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and exert the required contact pressure is kept 

unchanged. Thus, the pulling force in terms of the 

voltage  E is now written as: 

 

𝐹 =
2𝜋𝑁2

𝐴(𝑅0 + 𝑥 𝐴⁄ )2
(

𝐸

𝑅
)

2 1

980
. 

 

The product variate estimate of 𝑹𝟐 and 𝑨(𝑹𝟎 +

𝒙 𝑨⁄ )  is calculated as (𝟑. 𝟖𝟐𝟑 ∙ 𝟏𝟎𝟓, 𝟏. 𝟎𝟎𝟐 ∙ 𝟏𝟎𝟒). 

The pulling force is expressed as a function of the 

voltage 𝑬 as follows: 

 

(𝑭̅, 𝑺𝑭) = (𝟎. 𝟐𝟎𝟓𝑬̅𝟐, 𝟎. 𝟎𝟖𝟕𝟕𝑬̅𝟐)[𝐠] 
 

The previous result comes from the fact that 

 

 𝑺𝑬
𝟐 = 𝟑𝑬̅𝑺𝑬and 𝑺𝑬 ≈ 𝟎. 𝟏𝑬.̅ 

 

Recalling that 

 

 (𝝆̅, 𝑺𝝆) = (𝟓𝟓. 𝟕𝟒, 𝟔. 𝟕𝟔),  

 

substitute for 𝒛 ≈ 𝟏. 𝟓. Thus, 

 

  𝑬̅ = 𝟐𝟕. 𝟕[𝑽]. 
 

This is the combinatorial-statistical value of the 

voltage needed to achieve a reliability level of 𝑹 >
𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗  according to the previous estimated 

pulling-force parameters of  

 

(𝑭̅, 𝑺𝑭) = (𝟐𝟒𝟖. 𝟑, 𝟑. 𝟑𝟐𝟓𝟒)[𝐠] 
 

8. CONCLUSION 

 

A context-based algebraic technique to 

produce a nearly-optimal orthogonal array was 

mathematically developed and applied. The 

selection was based on the strength and D-

efficiency of the arrays, alongside the consideration 

of the corresponding orbits and suitable run sizes to 

be able to meet the independence criterion. The 

independence of the design parameters and 

associated system requirements was achieved by 

considering the relay’s actual operation using the 

pulling force. Similarly, its efficiency was 

appraised according to the level of reliability 

needed in this type of electrical systems.  

Preliminary results show that the optimized 

array has a lower signal to noise ratio than the 

traditional designs. However, the construction of 

the arrays, their classification in an orbit, and the 

selection of the best design do require more 

computational power and considerable more time. 

The authors are currently working on fixing these 

two main issues. 
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