Response by Authors to Reviewer's Remarks/Comments

Scale Effects of Plate Load Tests in Unsaturated Soils

Authors: Won Taek Oh and Sai Vanapalli

The authors have summarized their replies to the Reviewers' comments in this response letter in a two column format. A revised manuscript is submitted addressing all the comments to the Journal of GEOMATE for possible publication.

	Reviewer_A's Comments	Authors Response
	Creeping displacement or settlement be-	The authors appreciate the comments from
	havior of soil material is not consider to	the reviewer A; however, creeping dis-
	deign foundation, tunnel, retaining wall	placement is beyond the scope of this pa-
	etc. It will be better if you can include	per at this time.
	the soil material creeping failure mecha-	
	nism which is leading to foundation	
	failure in your paper.	
	Reviewer_B's Comments	Authors Response
1	Remove "In addition, there are different	The sentence is removed in the revised
	ground improvement methods to in-	manuscript.
	crease the bearing capacity and reduce	
	the settlements".	
2	Remove "hereafter referred to as SFs".	The phrase is removed in the revised man-
		uscript.
3	Fig. 1	Fig. 1 is modified as per the reviewer's
4		comments.
4	This means to be well known and ac-	The authors provided the details to justify
	cepted. Why do authors need to provide	the estimation of average matric suction
	this level of evidence if well understood	and for completeness of the paper.
5	and accepted?	Fig. 2 and the relevant evolutions are
3	Fig. 2: not necessary	Fig. 2 and the relevant explanations are
		removed in the revised manuscript as per the comments.
6	From an engineering practice point of	This sentence is removed in the revised
U	view, these curves can be considered to	manuscript as per the reviewer's comment.
	be unique. (remove this sentence)	manuscript as per une reviewer's comment.
7	The critical state concept discussed	This paragraph is removed in the revised
1	above can be effectively used to explain	manuscript due to the relevance to the item
	the scale effects of SFs in saturated or	'4'.
	dry sands. However, this concept may	
	not be applicable to interpret the scale	
	effects of plate size in unsaturated soils.	
	The SVS behaviors in unsaturated soils	
	are influenced both due to the footing	
l		

	size and matric suction. The influence of matric suction however is typically ig- nored in conventional engineering prac- tice.	
8	section 4.2 initial (<i>drained</i>) tangent elastic modulus, E_i	The authors did not use the term, 'drained' because a study by authors showed that Eq. (4) can also be extended to estimate the variation of initial tangent elastic mod- ulus for the in-situ plate load test results in unsaturated fine-grained soils. <i>Vanapalli, S.K. and Oh, W.T. 2010. A model for predicting the modulus of elas-</i> <i>ticity of unsaturated soils using the Soil-</i> <i>Water Characteristic Curves. Internation-</i> <i>al Journal of Geotechnical Engineering,</i> <i>4</i> (4): 425-433.
9	Fig. 11 and Fig. 12 (include information about rate of loading)	Rate of loading is included in the revised figure.
10	Fig. 15(a) and (b) (include information about rate of loading)	Rates of loading are not included in the figures since the results are from bender element test.
11	Fig. 18 (Do you have measured suction values?)	The suction distribution profile in Fig. 18 is idealized behavior to explain average matric suction concept. Measured suction values were not available in the literature.

The authors appreciate the valuable comments from the Reviewers.