EVALUATINGMECHANICAL STRENGTH OF PEAT SOIL TREATED BY FIBER INCORPORATED BIO-CEMENTATION

Authors

  • Meiqi Chen Graduate School of Engineering, Hokkaido University, Japan
  • Sivakumar Gowthaman Faculty of Engineering, Hokkaido University, Japan
  • Kazunori Nakashima Faculty of Engineering, Hokkaido University, Japan
  • Satoru Kawasaki Faculty of Engineering, Hokkaido University, Japan

Keywords:

Microbial induced carbonate precipitation (MICP), Peat soil,Bamboofiber, Fall cone test, Native bacteria

Abstract

Peat soil is an accumulation of partially decayed vegetation, formed under the condition of nearly permanent water saturation, which makes the high moisture and compressibility as two main features of peat. In recent years, the lack of construction lands diverts researchers' attention to make use of marginal grounds, like peatland, after some improvements. The past decade has witnessed a growing interest in microbial induced carbonate precipitation (MICP) due to its reliability, broad application, and potential contribution to sustainable and green development. This study has two primary aims: (i) investigating the feasibility and effectiveness of MICP in peat soil combined with bamboo fiber reinforcement, and (ii) ascertaining the mechanism of bamboo fiber incorporated MICP. Bamboo fiber possesses some unparalleled advantages owing to its fast growth and ability to survive in diverse climates. This study differs from previous researches in the use of native bacteria isolated from the peat soil, while most of them were conducted using exogenous bacteria, which might pose a threat regarding adaption and microbial pollution. Different concentrations of cementation resources (1-3 mol/L) and proportion of fibers (0-50%) were studied, and each case was well designed. Treated samples were subjected to the fall cone test to estimate the undrained shear strength at certain time intervals. The results revealed that samples with higher fiber content gained higher strength than others did, whereas high initial cementation resources in soil could reduce strength. Microscale observations were also performed on treated samples to clarify the mechanism of MICP incorporated with fiber.

Downloads

Published

2021-02-26

How to Cite

Meiqi Chen, Sivakumar Gowthaman, Kazunori Nakashima, & Satoru Kawasaki. (2021). EVALUATINGMECHANICAL STRENGTH OF PEAT SOIL TREATED BY FIBER INCORPORATED BIO-CEMENTATION. GEOMATE Journal, 20(78), 121–127. Retrieved from https://geomatejournal.com/geomate/article/view/187